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ABSTRACT

Minimizing crop losses under constraints of land, water, and environmental
sustainability is the prime need to meet the anticipated 50-60% rise in the
world’s food demand by 2050. Plant diseases continue to be a significant
barrier to production, frequently resulting in lower yields, lower quality,
and higher chemical inputs. Laboratory diagnostics and visual scouting
based on symptomatology are the mainstays of conventional disease
detection techniques. However, these methods are limited by subjectivity,
destructiveness, unable to identify infections in their latent or early phases
and time consuming. Hyperspectral imaging (HSI) has emerged as a
powerful, non-destructive technology capable of bridging the gap between
physiological disruption and the onset of visible symptoms. By capturing
hundreds of continuous narrow spectral bands across the visible, near-
infrared, and shortwave infrared regions, HSI enable pixel-level
characterization of plant physiological status. This review highlights the
recent advancement in HSI based sensing for early detection of plant
diseases, with emphasis on detection mechanisms, key spectral regions
and vegetation indices, and applications across viral, fungal, bacterial and
complex etiological patho-systems. We further discuss about the
development of deep-learning frameworks, machine learning integration,
and remote sensing platforms like UAVs. Lastly, the main obstacles and
potential paths for converting HSI from experimental research to functional
disease surveillance systems are described.

Keywords : Hyperspectral imaging, Early disease detection, Plant pathology,
Remote sensing, Precision agriculture, Machine learning

Introduction

Global food security assurance under
accelerating population growth, dietary
transitions, and climate variability
represents one of the most pressing

challenges of the 21st century. Global food
demand has been projected to rise by 50—
60% between 2019 and 2050, with the
most severe pressure anticipated in
developing country like India, where the
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demographic expansion, urbanization, and
rising incomes are reshaping consumption
patterns (Falcon et al., 2021). This
incremental demand for food, in the
perspective of shrinking arable land and
freshwater resources, is necessitating the
substantial gains in productivity per unit
input. Plant diseases constitute a major
threat to achieving these goals. Globally,
pathogens and pests account for significant
yield losses in major food crops, reduce
market quality, and increase reliance on
chemical control measures, thereby
exacerbating environmental risks and
resistance development (Savary et al.,
2019). Climate change, increasing
monoculture, landscape simplification,
and pesticide selection pressure further
augment the occurrence and severity of
disease outbreaks (Ristaino et al., 2021;
Singh et al., 2023). Mixed and synergistic
infections further complicate diagnosis and
management, often accelerating disease
progression and increasing crop losses
(Moreno, 2020).

Early detection is widely considered as
the most efficient way to restrict disease
spread, enable focused remedies, and
reduce pesticide load. However, the
conventional diagnostics rely mainly on
observable symptom expression or
laboratory-based methods such as
microscopy, cultural, serological and
molecular approaches, which are time-
consuming, destructive, and impractical
for continuous large-scale monitoring.
These limitations have driven the interest
in non-invasive sensing technologies
capable of identifying early pre-
symptomatic physiological stress. Among
emerging approaches, the hyperspectral
imaging has exceptional potential to bridge

the gap between invasion of pathogen and
visible symptom development. By
capturing detailed spatial and spectral
information, the HSI enables early
detection of disease-induced biochemical
and structural changes on leaves and
canopies in field scales. This review
critically evaluates the principles, spectral
foundations, and applications of
hyperspectral imaging for early and
premature detection of plant diseases,
highlighting achievements, limitations, and
future prospects.

Limitations of Conventional Plant
Disease Detection

Traditional plant disease diagnosis is
primarily based on visual symptom
assessment, expert knowledge, and
laboratory confirmation. While these
approaches remain indispensable for
definitive pathogen identification, they
exhibit significant limitations when applied
to early detection and large-scale
surveillance. Visual scouting depends on
observable symptoms such as chlorosis,
necrosis, wilting, and lesion formation
(Agrios, 2005). However, the visible
symptoms typically appear only after
substantial progress of pathogen
colonization followed by physiological
disruption. Many viral, bacterial, and
fungal pathogens exhibit prolonged latent
periods during which infection progresses
without external manifestation of
symptoms (Pethybridge and Nelson, 2015).
Consequently, the symptom-based
detection fails to identify latent or mixed
infections and often underestimates
disease prevalence. Observer subjectivity
and inconsistent disease rating scales
further reduce reproducibility and
comparability across studies and
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environments (Bock et al., 2010).
Laboratory-based diagnostics such as
microscopy, culture-based methods,
serological and molecular based
diagnostics provide high specificity and
sensitivity. These methods not only require
the destructive sampling, skilled
personnel, extra time and labour, costly
infrastructure but also delay in taking
decision on disease management
(Martinelli et al., 2015), offer chances of
examining limited and selected samples
and propose no scope for large scale field
monitoring. In laboratory-based system,
the detection of biotic/abiotic problem and
its expert advisories take time which leads
to the adoption of no or late disease
management (Liu et al.,, 2023; Mishra et
al., 2020). These constraints limit their
applicability for continuous monitoring and
early warning systems at the field scale.
Collectively, these limitations underscore
the need for advanced, non-destructive
sensing technologies capable of detecting
early physiological stress at high spatial
and spectral resolution.

Optical sensing technique which
quantifies the spectral response of crop
canopy to pathogen infection using
traditional RGB photography,
multispectral imaging, hyperspectral
imaging and thermal imaging offers
opportunity for non-destructive method for
early detection of plant diseases. These
imaging systems can be used as hand-held
device (proximal sensing) or mounted on
different airborne and spaceborne
platforms to facilitate regular disease
monitoring. The present article focuses on
scope of hyperspectral sensing as quick
and non-destructive disease monitoring
tool for plant disease monitoring.

Fundamentals of Hyperspectral Imaging
Imaging vs Non-imaging Sensors

Spectral observation is generally
carried out using two fundamental types
of sensors — imaging and non-imaging
sensors. The imaging sensors capture
detailed spatial data to form pictures (like
in cameras) constituting of array of pixels
representing the spatial arrangement of
features in the object plane showing their
shapes, size and typical spectral contract
with respect to the neighboring features,
while non-imaging sensors provide single-
point measurements (like IR thermometer
or portable spectroradiometer) representing
the whole object plane, without pixel-level
detail. The concept of imaging and non-
imaging sensors is explained in Figure 1.
The output of non-imaging sensors is
simple but less spatially rich. The non-
imaging spectroradiometer sensors are
typically used for getting spectral signature
of surfaces of different objects. On the other
hand, the imaging sensors mounted on
UAV, Aircraft or satellite platforms to get
the imageries of areas in the Footprint’ or
‘Swath’.

Multi-spectral vs Hyperspectral Sensors

Spectral resolution is one of the
important characteristics of optical sensing
which deals with the visible and near
infrared (VNIR) range of radiation. There
are three basic categories of optical imaging
namely, panchromatic, multispectral and
hyperspectral. The panchromatic sensor
combines the visible spectrum with non-
visible wavelengths, such as ultraviolet or
infrared to produce single band gray scale
images like black and white photographs.
As this system integrates the reflected
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Figure 1. Schematic diagram demonstrating output from imaging and non-imaging
sensors (Drawn after Wintson et al., 2018)

energy in all spectral bands in the range it
can produces image of higher spatial
resolution. The multispectral imaging (MSI)
sensors segregate the reflected power into
different spectral bands (typically 3 to 10
bands) in the visible and near infrared
region. On the other hand, hyperspectral
imaging (HIS) sensors capture data in
hundreds of extremely narrow spectral
bands to form the image of higher spectral
details.

Both the systems have their own
advantages and limitations. As the HSI
sensors capture the energy in small
spectral bands the energy gain for each
band is comparatively low, hence these
images are typically of low spatial
resolution as compared to MSI images

(Feng et al., 2020). Furthermore,
hyperspectral remote sensing involves
large data volume and hence, the data
processing is complex and resource-
intensive whereas the multispectral data
processing is easier and faster.

Hyperspectral Imaging for Plant Disease
Monitoring

Spectral Response to Plant Diseases

Plant tissues exhibit characteristic
interactions with electromagnetic radiation
across different spectral regions. In the
visible range, reflectance is dominated by
photosynthetic pigments such as
chlorophylls and carotenoids. The near-
infrared region is primarily influenced by
internal leaf structure and mesophyll
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Figure 2. Schematic diagram of multispectral and hyperspectral sensing systems

scattering, while the shortwave infrared
region is sensitive to water content,
proteins, and structural carbohydrates
(Curran, 1989; Jacquemoud and Ustin,
2019).

Pathogenic infection causes detectable
changes in plant canopy as a result of
metabolic disorder leading to the change
in plant water relation, canopy
temperature, biochemical characteristics
as well as pigment composition. While
symptom-based detection fails to identify
latent or mixed infections and often
underestimates disease prevalence, the
subtle changes in crop canopy during early
stages of disease development is often
detectable in its spectral characteristics.
Disease-induced alterations in these
components produce measurable spectral
changes that can be exploited for early

diagnosis. The typical spectral
characteristics expressed by plotting the
spectral reflectance (and emittance) at
different wavelengths is termed as
‘spectral signature’. The spectral
signature of potato late blight (PLB) at
different stages of disease development in
shown in Figure 3.

Critical Wavelength Regions

A healthy vegetation is often
characterized by high reflectance in the
middle of visible spectrum (i.e., green band)
and again a very high reflectance in the
Near Infrared (NIR) range. Extensive
research has identified key spectral regions
associated with disease-induced
physiological changes. In the visible
spectrum, the bands around 550-560 nm
and 660-680 nm are sensitive to
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Figure 3. Spectral signature of PLB at different stages of disease development (Kundu

etal, 2021)

chlorophyll degradation and chlorosis
(Mahlein et al., 2012). The red-edge region
(700-750 nm) is particularly responsive to
early stress, often exhibiting a “blue shift”
under disease conditions. Near-infrared
wavelengths (750-1000 nm) reflect internal
leaf structure and are sensitive to tissue
degradation and water imbalance. In the
shortwave infrared region, strong water
absorption features around 1400 nm and
1900 nm provide reliable indicators of
dehydration and cellular damage. These
spectral regions form the foundation for
disease detection across diverse crops and
pathogens. The spectral regions at which
significant differences in bio-optical
response of PLB was observed between
healthy and diseased canopy include, 680-
730 nm (47.84%), 750-900 nm (76.14%)

and 860-1040 nm (68.60%) (Kundu et al.,
2021).

However, optical sensing using RGB
and multispectral cameras that include
RGB, NIR and middle IR bands remain
constrained by limited spectral resolution.
The RGB sensors capture only three broad
bands, while multispectral sensors
typically acquire fewer than ten bands,
insufficient to detect subtle biochemical
changes preceding visible symptoms
(Mahlein, 2016; Calderon et al., 2015).
Hyperspectral imaging integrates
spectroscopy and imaging to acquire
reflectance or radiance data across
hundreds of contiguous narrow spectral
bands, typically spanning the visible (400—
700 nm), near-infrared (700-1000 nm), and
shortwave infrared (1000- 2500 nm)

87




SATSA Mukhapatra - Annual Technical Issue 30 : 2026

regions (Govender et al.,, 2009). Unlike
multispectral systems, which sample
discrete broad bands, HSI provides
continuous spectral information with high
fidelity, enabling detailed characterization
of plant biochemical and structural
properties. The resulting hyperspectral
data are organized into a three-
dimensional “hypercube” consisting of two
spatial dimensions (X, Y) and one spectral
dimension (€). This structure allows
extraction of complete spectral signatures
at individual pixels, spatial mapping at
specific wavelengths, or combined spatial
spectral analysis. Such integration is
critical for detecting localized disease
hotspots and understanding spatial
heterogeneity within plant canopies.

Mechanisms of Asymptomatic Disease
Detection

The key advantage of hyperspectral
imaging lies in its ability to detect
physiological stress before visible symptoms
emerge. During early infection stages, host
plants activate defense responses, alter
metabolism, and experience subtle
structural damage that precedes external
manifestation of symptoms. One major
pathway involved in the activation of
defence response the accumulation of
secondary metabolites such as phenolics
and flavonoids, which are synthesized
rapidly in response to pathogen invasion.
These compounds influence the reflectance
in specific spectral regions, particularly near
the red edge and ultraviolet-visible bands.
Shifting of red-edge position around 705-
740 nm has been consistently reported as
early indicators of stress.

Pathogen colonization also disrupts
cellular integrity, leading to reduced leaf

water content and altered mesophyll
structure. These changes are reflected in
decreased near-infrared scattering and
increased reflectance in water absorption
bands around 1400 nm and 1900 nm in
the SWIR region (Gold et al.,, 2020). By
capturing these subtle spectral responses,
HSI enables discrimination between
healthy and infected tissues days before
symptoms appear.

Studies on late and early blight in potato
demonstrated that the hyperspectral
signatures associated with water content
and internal structure enabled detection
two to four days prior to symptom
expression, achieving classification
accuracies exceeding 90% (Bauriegel and
Herppich, 2014). Recent studies at BCKV
demonstrated the use of hyperspectral tools
for measuring disease severity index (DSI)
of potato late blight (Kundu et al.,, 2021).
Such findings illustrate HSI’s capability to
monitor disease progression mechanistically
rather than symptomatically.

Spectral Signatures and Vegetation
Indices

Disease-centric Vegetation Indices

Vegetation indices (VIs) condense spectral
information into quantitative metrics
linked to physiological traits. While
conventional indices such as NDVI
(Normalized difference vegetative index) are
sensitive to general greenness, disease-
specific applications benefit from
integrating multiple indices sensitive to
pigments, water content, and senescence.
Indices such as NDWI (Normalized
difference water index), PSRI (Plant
senescence reflectance index), MCARI
(Modified chlorophyll absorption ratio
index), and PRI (Photochemical reflectance
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index) have shown strong associations with
disease stress. Studies consistently
demonstrate that combining multiple
indices within machine-learning
frameworks significantly improves
diagnostic accuracy compared to single-
index approaches. Disease-specific indices,
such as the Fusarium disease index
developed for wheat, further enhance
sensitivity and specificity by targeting
pathogen-relevant spectral features.
Among the various spectral indices, the
Red-edge normalized difference vegetation
index and disease water stress index could
be able to predict PLB infestation with
reliable accuracy level (Kundu etal., 2021).

Applications Across Pathosystems
Viral Diseases

Viral infections induce systemic
physiological stress, making them particularly
amenable to early detection using HSI.
Changes in stomatal conductance, pigment
composition, and water status alter spectral
signatures even in asymptomatic tissues.
Hyperspectral imaging has successfully
detected grapevine viruses, tobacco mosaic
virus, tomato spotted wilt virus, and cereal
viruses prior to visible symptom development.
Importantly, the hyperspectral sensing does
not detect the virus directly but serves as an
effective early-warning system by capturing
host stress responses. Field and greenhouse
studies consistently report reliable
discrimination between infected and healthy
plants using VIS-NIR (Visible near infrared)
hyperspectral data coupled with machine
learning.

Fungal Diseases

Fungal pathogens have been
extensively studied using hyperspectral

imaging across cereals, vegetables, fruits,
and industrial crops. Fungal pathogens
induce localized and progressive structural
damage, pigment degradation, and water
loss, all of which produce distinct
hyperspectral signatures. Early detection
of rusts, blights, powdery mildew, and
Fusarium infections has been achieved at
leaf, canopy, and grain levels. HSI has been
successfully applied to detect fungal
diseases such as Fusarium head blight in
wheat, orange rust in sugarcane, and
powdery mildew in grapevine, often days
before visible symptoms appear. More
recently, Mukhopadhyay et al. (2025)
reported spectral insights into symptom
development and biochemical changes
during the advancement of cucumber
downy mildew disease. Studies
demonstrate that reflectance changes in
the visible, red-edge, and near-infrared
regions correlate strongly with fungal
colonization and mycotoxin accumulation,
enabling early intervention and improved
food safety. HSI has also been applied to
detect toxigenic fungi in stored grains,
demonstrating near-perfect classification
accuracy under controlled conditions.

Bacterial Diseases

Bacterial diseases often progress rapidly
and are difficult to manage once symptoms
appear. HSI has shown strong potential for
early detection of bacterial leaf blight in
rice and bacterial leaf spot in tomato
seedlings by identifying disease-induced
biochemical and structural changes. When
combined with advanced learning
frameworks such as convolutional neural
networks (CNN) and data augmentation
techniques, the hyperspectral analysis
achieves robust classification even with
limited training data.
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Complex Disease Detection

In real-world conditions, crops frequently
experience multiple stresses simultaneously.
HSI excels in disentangling such complex
disease syndromes by leveraging high-
dimensional spectral information. It has
been used to differentiate overlapping

diseases and abiotic stresses, such as
distinguishing Huanglongbing from
drought stress in citrus and separating
mixed fungal-viral infections in grapevine
and sugar beet systems. This capability
positions HSI as a critical and reliable tool
for holistic plant health monitoring.

Table 1. Application of hyperspectral imaging system for detection of few important

crop diseases

Crops Diseases & HSI sensor / Key findings References
causal spectral range
organisms

Grapevine | Grapevine vein- SPECIM IQ (400- Detected spectral deviations Nguyen et al.,
clearing virus 1000 nm) before visible symptoms 2021a
(GVCV)

Grapevine | Leaf roll & Red VIS-NIR Early vineyard-scale Sudarshana
blotch viruses hyperspectral discrimination of virus etal., 2015
(GLRaVs) Sensors stress

Tobacco Tomato spotted VIS-NIR Virus detected as early as Krezhova
wilt virus (TSWV) | hyperspectral 14 days post-inoculation etal, 2014

imaging

Wheat Soil borne wheat Visible (VIS), Scientists used one Haagsma,
mosaic virus 400-700 nm, machine-learning process et al., 2023

NIR, 700-2500 to build a categorization

nm, spectral model that automatically

regions. sorts pixels into symptomatic,
non-symptomatic, and
healthy groups.

Soybean Soybean yellow Most effective Random forest and k-nearest Ghimire,
mottle mosaic information neighbour, these two models etal., 2025
virus gained in a range were used to classify the

from 653 nm to infected and healthy plants
682 nm. ery accurate.

Wheat Fusarium head VIS-NIR HSI + PLS | Early detection via DON- Polder
blight (Fusarium related spectral features et al., 2005
spp-)

Wheat Aspergillus, NIR HSI Up to 100% accuracy for Dowell

kernels Penicillium, (1000 -1600 nm) infected vs. healthy kernels etal., 1999
A. niger

Bok choy | Fusarium VNIR HSI 99% accuracy within 1-2 Nguyen
commune, (445-728 nm) days post-infection etal., 2021b
Rhizoctonia solani
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Crops Diseases & HSI sensor / Key findings References
causal spectral range
organisms
Jujube Black spot Visible and near- During postharvest storage, Jiang,
caused by infrared (Vis-NIR, both Vis-NIR and NIR etal., 2023.
Alternaria 400-1000 nm) hyperspectral imaging
alternata and short-wave techniques showed a good
infrared (SWIR, ability to detect black spot
1000-2000 nm) infection in winter jujubes.
spectral regions Additionally, the spectrum
data from VIS-NIR HSI made
it possible to clearly visualize
the disease’s evolution in
space, making it possible to
discriminate between the
fruit’s infected areas at each
stage of the pathogen’s
development.

Peach Gray mold
(Botrytis cinerea) Application of PCA (Principal Sun,

Soft rot VIS-NIR region component analysis) etal, 2018.
(Rhizopus stolonifer)| (400-1000) nm decreased the large

Anthracnose dimensionality of the

(Colletotrichum hyperspectral imaging.

acutatum)

Apple Botrytis VIS-NIR region CNN and PRS were used to Zhu,
cinereaRhizopus (400-1000) nm skillfully obtain the best etal., 2023
stolonifer determinants of the degree

of the infection.

Citrus Anthracnose Machine learning algorithms Tang,
(Colletotrichum VIS-NIR region were practically used to assess etal., 2023,
gleosporioides ) the disease detection

performance.

Tomato | Bacterial leaf VIS-NIR HSI + ML | Early greenhouse detection Zhang

seedlings | spot before field transfer et al., 2024

Citrus Huanglongbing UAV HSI + Red-edge signatures separated Zarco-Tejada
(CLas) vs drought thermal biotic and abiotic stress etal, 2021
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RGB-to-Hyperspectral Spectral
Reconstruction for Plant Disease
Applications

Recent advances in RGB-to-
hyperspectral (RGB to HSI) spectral
reconstruction provide a cost-effective
alternative to direct hyperspectral sensing,
addressing the limited availability and high
cost of HSI hardware in agricultural
applications. Spectral reconstruction, also
known as spectral super-resolution, aims
to recover dense hyperspectral signatures
from standard RGB images by learning
spatial-spectral correlations from
hyperspectral datasets. State-of-the-art
deep learning approaches, including
transformer-based architectures such as
MST++ (Cai et al., 2022) and SPECAT (Yao
etal., 2024), as well as label-efficient pixel-
level reconstruction frameworks (Leng et
al., 2025), have demonstrated strong
performance in reconstructing high-fidelity
hyperspectral data from RGB inputs. While
these methods have primarily been
evaluated on general-purpose benchmark
datasets, their relevance to plant disease
detection is increasingly evident, as
disease-induced physiological changes
such as chlorophyll degradation, water
stress, and red-edge shifts exhibit
structured spectral patterns that can be
partially inferred from RGB observations.
Integrating RGB to HSI reconstruction into
plant disease monitoring pipelines enables
broader deployment of spectral analysis
using consumer-grade imaging devices,
while retaining much of the diagnostic
value associated with hyperspectral data
for early disease detection.

Remote Sensing Platforms and Future
Integration

Initially, hyperspectral imaging
applications in Plant Pathology were largely
confined to proximal sensing under
controlled laboratory or greenhouse
conditions, where they provided critical
insights into plant-pathogen interactions
and disease physiology (Mahlein et al.,
2012). However, advances in sensor
miniaturization and improved portability
have transformed HSI from a research-
oriented technique into a field-deployable
remote sensing technology. Hyperspectral
sensors can now be mounted on ground-
based platforms, unmanned aerial vehicles
(UAVs), and satellite systems, enabling
scalable disease monitoring under realistic
agricultural conditions (Govender et al.,
2009; Zarco-Tejada et al., 2019). Rapidly
developed remote sensing technology offers
strong technical support for the non-
destructive disease detection and
monitoring of crop diseases in large scale
(Dhingra et al., 2018; Zhu et al., 2018).
Remote sensors provide a synoptic view of
the crop condition in a periodic manner
over extensive areas simultaneously and
capture the subtle canopy reflectance
variabilities caused due to changes in the
bio-optical response of vegetation canopy
as a result of biotic and/or abiotic stress
(Xue and Su, 2017).

Among available platforms, UAV-based
hyperspectral systems currently dominate
operational research and precision
agriculture applications. UAVs offer an
optimal compromise between spatial
resolution and coverage, bridging the gap
between ground observations and satellite
remote sensing. Their ability to acquire
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high-resolution and repeatable imagery
allows early detection of disease hotspots
and accurate mapping of disease severity.
UAV-based HSI has been successfully
applied to detect fungal, bacterial, and viral
diseases in crops such as wheat, potato,
grapevine, citrus, and olive, often several
days to weeks before visible symptoms
appear (Gold et al., 2020; Zhang et al.,
2024). For example, hyperspectral UAV
observations enabled pre-symptomatic
detection of late blight and early blight in
potato by capturing disease-specific
changes in leaf water content and internal
structure (Gold et al., 2020).

Traditionally, the HSI systems were
large, complex and expensive. NASA’s EO-
1 Hyperion (2000 to 2017), pioneered
Hyperion hyperspectral imager, which
collected 220 detailed spectral bands for
precise mapping of land, water, and
atmosphere at 30 m resolution (https://
cmr.earthdata.nasa.gov/search/concepts/
C1220567951-USGS_LTA .html). Recently,
there has been significant development in
sensor design and small satellite
technology (CubeSats) which led to the
development of and cost-effective,
miniaturized HSI payloads. The recently
launched Pixxel’s Firefly in August, 2025
(https://www.pixxel.space/firefly ) is
capable to capture about 135 spectral
bands at a 5-meter resolution across a 40-
kilometre swath. The Copernicus
Hyperspectral Imaging Mission for the
Environment (CHIME), the future mission
of European Space Agency (ESA) will
capture earth image in over 200 spectral
bands, with a 30-meter resolution to
support of environmental and resource
monitoring.

Despite these advantages, challenges
remain related to data volume, sensor
sensitivity under variable illumination, and
integration across sensing platforms.
Differences in spatial resolution, spectral
configuration, and data formats complicate
data fusion between proximal, UAV, and
satellite systems. Furthermore,
hyperspectral datasets require advanced
analytical frameworks to address
redundancy, noise, and limited labeled
samples. Recent studies demonstrate that
coupling HSI with machine learning and
deep learning significantly improves
robustness and classification accuracy in
field environments (Rumpf et al., 2011;
Wan et al., 2022).

Looking ahead, the future of
hyperspectral remote sensing for plant
disease detection lies in system integration
and increasing autonomy. Climate change
and globalized trade are accelerating the
spread of plant pathogens, heightening the
demand for rapid, non-invasive, and
scalable surveillance tools. Hyperspectral
sensing stands out among remote sensing
technologies due to its ability to
discriminate disease types, map affected
areas, and quantify severity using
continuous spectral information.
Integration of HSI with complementary
sensors such as thermal imaging and
LiDAR is expected to enhance diagnostic
reliability by combining physiological,
thermal, and structural indicators (Zarco-
Tejada et al., 2021). Moreover, emerging
satellite-based hyperspectral missions hold
promise for regional-scale disease
surveillance, complementing high-
resolution UAV observations. Together,
these advances position hyperspectral
remote sensing as a cornerstone
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technology for next-generation precision
agriculture and proactive plant health
management.

To extend plant disease monitoring
from field- and plot-level analysis to
regional and national scales, recent
research increasingly focuses on satellite-
only and satellite-ground fusion
frameworks that emphasize both scalability
and interpretability. Multispectral satellite
imagery from sensors such as Sentinel-2
(ESA, Copernicus Mission), Landsat-8/9
(Roy etal., 2014), PlanetScope and MODIS
(Justice et al.,, 2002) enables continuous,
large-area observation of crop conditions
when coupled with robust pre-processing
pipelines, including atmospheric
correction, cloud and shadow masking,
and cross-sensor spectral harmonization.
Disease-relevant signals can be enhanced
through the integration of interpretable
vegetation indices related to chlorophyll
content, canopy structure, red-edge
dynamics and photosynthetic stress,
optionally augmented with climatic and
soil moisture data to disentangle biotic
stress from environmental variability.
Attention-based classifiers, such as
transformer or U-Net variants, allow spatial
context to be incorporated into per-pixel
health classification, while emerging
vision-language model (VLM) frameworks
enable the generation of natural-language
explanations grounded in spectral and
index evidence. To mitigate the inherent
spatial-resolution limitations of satellite
imagery, dual-encoder contrastive learning
approaches can be proposed that align
satellite representations with fine-grained
ground-level observations, allowing
satellite models to inherit plant-level
disease cues during training while

remaining satellite-only at inference.
Together, these strategies offer a promising
pathway for scalable, explainable crop
disease surveillance that bridges local
diagnostics and large-scale agricultural
decision-making.

Data Analysis Advances and Challenges

Modern hyperspectral systems capture
dozens to hundreds of narrow spectral
bands, enabling detailed characterization
of plant physiological and biochemical
properties. While this richness enhances
diagnostic potential, it also introduces
substantial computational and analytical
challenges, particularly for platforms with
limited onboard processing capacity such
as satellites. Consequently, hyperspectral
data analysis has evolved into a dynamic
research field focused on transforming
high-dimensional observations into
actionable agricultural insights. One of the
principal challenges in hyperspectral image
classification is the Hughes phenomenon,
where increasing spectral dimensionality
combined with limited labeled samples
leads to reduced model performance.
Feature engineering and active learning
strategies have emerged as effective
solutions to this problem. By selectively
identifying the most informative samples
for annotation, active learning reduces
labeling requirements while improving
classifier generalization under data-scarce
conditions. This targeted approach is
especially valuable for agricultural
applications, where ground truth data
collection is labour-intensive and costly.

In parallel, there has been a notable
shift from traditional machine-learning
methods toward deep learning
architectures capable of jointly exploiting
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spatial and spectral information. Although
originally developed for natural image
analysis, deep learning models are
increasingly adapted to hyperspectral data
by addressing challenges related to
massive data volumes, spectral
redundancy, and spatial-spectral
resolution trade-offs. These developments
have substantially improved classification,
accuracy and robustness. More recently,
integrated analytical frameworks have
been proposed to enhance early plant
disease diagnosis. These systems combine
spatial segmentation techniques to isolate
highly informative, early symptomatic
regions with advanced preprocessing
methods to improve data quality. Final
disease classification is achieved using
deep networks that integrate chlorophyll-
related indices with spectral-spatial
features. Collectively, these innovations
represent a significant step toward fast,
accurate, and scalable hyperspectral-
based disease detection systems for
precision agriculture.

The high dimensionality of hyperspectral
data introduces challenges including
redundancy, noise, and limited labeled
datasets. Feature selection, dimensionality
reduction, and active learning strategies
are essential to mitigate the Hughes
phenomenon. Recent shifts toward deep
learning architectures have improved
spatial-spectral feature extraction and
classification accuracy. Integrated
frameworks combining segmentation,
preprocessing, and advanced neural
networks demonstrate superior
performance for early disease detection.
However, challenges related to data
standardization, computational demands,
and generalizability remain significant.

In addition to improving predictive
performance, interpretability and
explainability have become important
analytical considerations in hyperspectral-
based plant disease detection. Deep
spatial-spectral models often learn
complex representations that are difficult
to relate directly to underlying plant
physiological processes, limiting
transparency and user trust. Recent
approaches, therefore, emphasize linking
predictions to meaningful spectral bands,
vegetation indices, or spatial regions
through attention visualization, saliency
mapping, and spectral attribution.
Emerging vision-language model (VLM)
integrations further extend interpretability
by translating spectral-spatial evidence
into concise natural-language
explanations, enabling models to
communicate diagnostic reasoning in
human-readable form. Despite these
advances, ensuring reliable and consistent
explanations across crops, sensors, and
environmental conditions remains an open
challenge.

Conclusion

Hyperspectral imaging has established
itself as a powerful, non-destructive tool
for early plant disease detection, capable
of identifying asymptomatic infections
across diverse pathosystems. Its ability to
capture mechanistic physiological changes
provides a decisive advantage over
conventional diagnostics. Despite its
potential, HSI faces hurdles including: i.
Data complexity: Large volumes of data and
the “curse of dimensionality” (Hughes
phenomenon) require advanced
dimensionality reduction like PCA or band
selection. ii. Environmental sensitivity:

95




SATSA Mukhapatra - Annual Technical Issue 30 : 2026

Fluctuations in illumination and
background noise necessitate rigorous
calibration. iii. Cost: While HSI matches
the speed of some laboratory tests, it
remains less cost-effective than standard

RGB or thermal imaging.

To achieve large-scale operational
adoption, future research must prioritize
sensor affordability, protocol standardization,
robust data pipelines, and integration with
decision-support systems. Addressing data
bottlenecks through transfer learning and
synthetic data generation will be critical.
Future research focusing on cost reduction
and the development of robust, field-
deployable machine learning models will
be essential for the widespread adoption
of HSI in global disease surveillance.
Ultimately, the convergence of hyperspectral
sensing, machine intelligence, and
autonomous platforms holds transformative
potential for precision phytopathology and
sustainable agriculture.
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