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ABSTRACT

Minimizing crop losses under constraints of land, water, and environmental

sustainability is the prime need to meet the anticipated 50–60% rise in the

world’s food demand by 2050. Plant diseases continue to be a significant

barrier to production, frequently resulting in lower yields, lower quality,

and higher chemical inputs. Laboratory diagnostics and visual scouting

based on symptomatology are the mainstays of conventional disease

detection techniques. However, these methods are limited by subjectivity,

destructiveness, unable to identify infections in their latent or early phases

and time consuming. Hyperspectral imaging (HSI) has emerged as a

powerful, non-destructive technology capable of bridging the gap between

physiological disruption and the onset of visible symptoms. By capturing

hundreds of continuous narrow spectral bands across the visible, near-

infrared, and shortwave infrared regions, HSI enable pixel-level

characterization of plant physiological status. This review highlights the

recent advancement in HSI based sensing for early detection of plant

diseases, with emphasis on detection mechanisms, key spectral regions

and vegetation indices, and applications across viral, fungal, bacterial and

complex etiological patho-systems. We further discuss about the

development of deep-learning frameworks, machine learning integration,

and remote sensing platforms like UAVs. Lastly, the main obstacles and

potential paths for converting HSI from experimental research to functional

disease surveillance systems are described.

Keywords : Hyperspectral imaging, Early disease detection, Plant pathology,

Remote sensing, Precision agriculture, Machine learning

Introduction

Global food security assurance under

accelerating population growth, dietary

transitions, and climate variability

represents one of the most pressing

challenges of the 21st century. Global food

demand has been projected to rise by 50–

60% between 2019 and 2050, with the

most severe pressure anticipated in

developing country like India, where the
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demographic expansion, urbanization, and

rising incomes are reshaping consumption

patterns (Falcon et al., 2021). This

incremental demand for food, in the

perspective of shrinking arable land and

freshwater resources, is necessitating the

substantial gains in productivity per unit

input. Plant diseases constitute a major

threat to achieving these goals. Globally,

pathogens and pests account for significant

yield losses in major food crops, reduce

market quality, and increase reliance on

chemical control measures, thereby

exacerbating environmental risks and

resistance development (Savary et al.,

2019). Climate change, increasing

monoculture, landscape simplification,

and pesticide selection pressure further

augment the occurrence and severity of

disease outbreaks (Ristaino et al., 2021;

Singh et al., 2023). Mixed and synergistic

infections further complicate diagnosis and

management, often accelerating disease

progression and increasing crop losses

(Moreno, 2020).

Early detection is widely considered as

the most efficient way to restrict disease

spread, enable focused remedies, and

reduce pesticide load. However, the

conventional diagnostics rely mainly on

observable symptom expression or

laboratory-based methods such as

microscopy, cultural, serological and

molecular approaches, which are time-

consuming, destructive, and impractical

for continuous large-scale monitoring.

These limitations have driven the interest

in non-invasive sensing technologies

capable of identifying early pre-

symptomatic physiological stress. Among

emerging approaches, the hyperspectral

imaging has exceptional potential to bridge

the gap between invasion of pathogen and

visible symptom development. By

capturing detailed spatial and spectral

information, the HSI enables early

detection of disease-induced biochemical

and structural changes on leaves and

canopies in field scales. This review

critically evaluates the principles, spectral

foundations, and applications of

hyperspectral imaging for early and

premature detection of plant diseases,

highlighting achievements, limitations, and

future prospects.

Limitations of Conventional Plant

Disease Detection

Traditional plant disease diagnosis is

primarily based on visual symptom

assessment, expert knowledge, and

laboratory confirmation. While these

approaches remain indispensable for

definitive pathogen identification, they

exhibit significant limitations when applied

to early detection and large-scale

surveillance. Visual scouting depends on

observable symptoms such as chlorosis,

necrosis, wilting, and lesion formation

(Agrios, 2005). However, the visible

symptoms typically appear only after

substantial progress of pathogen

colonization followed by physiological

disruption. Many viral, bacterial, and

fungal pathogens exhibit prolonged latent

periods during which infection progresses

without external manifestation of

symptoms (Pethybridge and Nelson, 2015).

Consequently, the symptom-based

detection fails to identify latent or mixed

infections and often underestimates

disease prevalence. Observer subjectivity

and inconsistent disease rating scales

further reduce reproducibility and

comparability across studies and
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environments (Bock et al., 2010).

Laboratory-based diagnostics such as

microscopy, culture-based methods,

serological and molecular based

diagnostics provide high specificity and

sensitivity. These methods not only require

the destructive sampling, skilled

personnel, extra time and labour, costly

infrastructure but also delay in taking

decision on disease management

(Martinelli et al., 2015), offer chances of

examining limited and selected samples

and propose no scope for large scale field

monitoring. In laboratory-based system,

the detection of biotic/abiotic problem and

its expert advisories take time which leads

to the adoption of no or late disease

management (Liu et al., 2023; Mishra et

al., 2020). These constraints limit their

applicability for continuous monitoring and

early warning systems at the field scale.

Collectively, these limitations underscore

the need for advanced, non-destructive

sensing technologies capable of detecting

early physiological stress at high spatial

and spectral resolution.

Optical sensing technique which

quantifies the spectral response of crop

canopy to pathogen infection using

traditional RGB photography,

multispectral imaging, hyperspectral

imaging and thermal imaging offers

opportunity for non-destructive method for

early detection of plant diseases. These

imaging systems can be used as hand-held

device (proximal sensing) or mounted on

different airborne and spaceborne

platforms to facilitate regular disease

monitoring. The present article focuses on

scope of hyperspectral sensing as quick

and non-destructive disease monitoring

tool for plant disease monitoring.

Fundamentals of Hyperspectral Imaging

Imaging vs Non-imaging Sensors

Spectral observation is generally

carried out using two fundamental types

of sensors – imaging and non-imaging

sensors. The imaging sensors capture

detailed spatial data to form pictures (like

in cameras) constituting of array of pixels

representing the spatial arrangement of

features in the object plane showing their

shapes, size and typical spectral contract

with respect to the neighboring features,

while non-imaging sensors provide single-

point measurements (like IR thermometer

or portable spectroradiometer) representing

the whole object plane, without pixel-level

detail. The concept of imaging and non-

imaging sensors is explained in Figure 1.

The output of non-imaging sensors is

simple but less spatially rich. The non-

imaging spectroradiometer sensors are

typically used for getting spectral signature

of surfaces of different objects. On the other

hand, the imaging sensors mounted on

UAV, Aircraft or satellite platforms to get

the imageries of areas in the ‘Footprint’ or

‘Swath’.

Multi-spectral vs Hyperspectral Sensors

Spectral resolution is one of the

important characteristics of optical sensing

which deals with the visible and near

infrared (VNIR) range of radiation. There

are three basic categories of optical imaging

namely, panchromatic, multispectral and

hyperspectral. The panchromatic sensor

combines the visible spectrum with non-

visible wavelengths, such as ultraviolet or

infrared to produce single band gray scale

images like black and white photographs.

As this system integrates the reflected
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energy in all spectral bands in the range it

can produces image of higher spatial

resolution. The multispectral imaging (MSI)

sensors segregate the reflected power into

different spectral bands (typically 3 to 10

bands) in the visible and near infrared

region. On the other hand, hyperspectral

imaging (HIS) sensors capture data in

hundreds of extremely narrow spectral

bands to form the image of higher spectral

details.

Both the systems have their own

advantages and limitations. As the HSI

sensors capture the energy in small

spectral bands the energy gain for each

band is comparatively low, hence these

images are typically of low spatial

resolution as compared to MSI images

Figure 1. Schematic diagram demonstrating output from imaging and non-imaging

sensors (Drawn after Wintson et al., 2018)

(Feng et al., 2020). Furthermore,

hyperspectral remote sensing involves

large data volume and hence, the data

processing is complex and resource-

intensive whereas the multispectral data

processing is easier and faster.

Hyperspectral Imaging for Plant Disease

Monitoring

Spectral Response to Plant Diseases

Plant tissues exhibit characteristic

interactions with electromagnetic radiation

across different spectral regions. In the

visible range, reflectance is dominated by

photosynthetic pigments such as

chlorophylls and carotenoids. The near-

infrared region is primarily influenced by

internal leaf structure and mesophyll
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Figure 2. Schematic diagram of multispectral and hyperspectral sensing systems

scattering, while the shortwave infrared

region is sensitive to water content,

proteins, and structural carbohydrates

(Curran, 1989; Jacquemoud and Ustin,

2019).

Pathogenic infection causes detectable

changes in plant canopy as a result of

metabolic disorder leading to the change

in plant water relation, canopy

temperature, biochemical characteristics

as well as pigment composition. While

symptom-based detection fails to identify

latent or mixed infections and often

underestimates disease prevalence, the

subtle changes in crop canopy during early

stages of disease development is often

detectable in its spectral characteristics.

Disease-induced alterations in these

components produce measurable spectral

changes that can be exploited for early

diagnosis. The typical spectral

characteristics expressed by plotting the

spectral reflectance (and emittance) at

different wavelengths is termed as

‘spectral signature’.  The spectral

signature of potato late blight (PLB) at

different stages of disease development in

shown in Figure 3.

Critical Wavelength Regions

A healthy vegetation is often

characterized by high reflectance in the

middle of visible spectrum (i.e., green band)

and again a very high reflectance in the

Near Infrared (NIR) range. Extensive

research has identified key spectral regions

associated with disease-induced

physiological changes. In the visible

spectrum, the bands around 550–560 nm

and 660–680 nm are sensitive to
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chlorophyll degradation and chlorosis

(Mahlein et al., 2012). The red-edge region

(700–750 nm) is particularly responsive to

early stress, often exhibiting a “blue shift”

under disease conditions. Near-infrared

wavelengths (750–1000 nm) reflect internal

leaf structure and are sensitive to tissue

degradation and water imbalance. In the

shortwave infrared region, strong water

absorption features around 1400 nm and

1900 nm provide reliable indicators of

dehydration and cellular damage. These

spectral regions form the foundation for

disease detection across diverse crops and

pathogens.  The spectral regions at which

significant differences in bio-optical

response of PLB was observed between

healthy and diseased canopy include, 680-

730 nm (47.84%), 750-900 nm (76.14%)

Figure 3. Spectral signature of PLB at different stages of disease development (Kundu

et al., 2021)

and 860-1040 nm (68.60%) (Kundu et al.,

2021). 

However, optical sensing using RGB

and multispectral cameras that include

RGB, NIR and middle IR bands remain

constrained by limited spectral resolution.

The RGB sensors capture only three broad

bands, while multispectral sensors

typically acquire fewer than ten bands,

insufficient to detect subtle biochemical

changes preceding visible symptoms

(Mahlein, 2016; Calderón et al., 2015).

Hyperspectral imaging integrates

spectroscopy and imaging to acquire

reflectance or radiance data across

hundreds of contiguous narrow spectral

bands, typically spanning the visible (400–

700 nm), near-infrared (700–1000 nm), and

shortwave infrared (1000– 2500 nm)
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regions (Govender et al., 2009). Unlike

multispectral systems, which sample

discrete broad bands, HSI provides

continuous spectral information with high

fidelity, enabling detailed characterization

of plant biochemical and structural

properties. The resulting hyperspectral

data are organized into a three-

dimensional “hypercube” consisting of two

spatial dimensions (X, Y) and one spectral

dimension (ë). This structure allows

extraction of complete spectral signatures

at individual pixels, spatial mapping at

specific wavelengths, or combined spatial

spectral analysis. Such integration is

critical for detecting localized disease

hotspots and understanding spatial

heterogeneity within plant canopies.

Mechanisms of Asymptomatic Disease

Detection

The key advantage of hyperspectral

imaging lies in its ability to detect

physiological stress before visible symptoms

emerge. During early infection stages, host

plants activate defense responses, alter

metabolism, and experience subtle

structural damage that precedes external

manifestation of symptoms. One major

pathway involved in the activation of

defence response the accumulation of

secondary metabolites such as phenolics

and flavonoids, which are synthesized

rapidly in response to pathogen invasion.

These compounds influence the reflectance

in specific spectral regions, particularly near

the red edge and ultraviolet-visible bands.

Shifting of red-edge position around 705–

740 nm has been consistently reported as

early indicators of stress.

Pathogen colonization also disrupts

cellular integrity, leading to reduced leaf

water content and altered mesophyll

structure. These changes are reflected in

decreased near-infrared scattering and

increased reflectance in water absorption

bands around 1400 nm and 1900 nm in

the SWIR region (Gold et al., 2020). By

capturing these subtle spectral responses,

HSI enables discrimination between

healthy and infected tissues days before

symptoms appear.

Studies on late and early blight in potato

demonstrated that the hyperspectral

signatures associated with water content

and internal structure enabled detection

two to four days prior to symptom

expression, achieving classification

accuracies exceeding 90% (Bauriegel and

Herppich, 2014). Recent studies at BCKV

demonstrated the use of hyperspectral tools

for measuring disease severity index (DSI)

of potato late blight (Kundu et al., 2021).

Such findings illustrate HSI’s capability to

monitor disease progression mechanistically

rather than symptomatically.

Spectral Signatures and Vegetation

Indices

Disease-centric Vegetation Indices

Vegetation indices (VIs) condense spectral

information into quantitative metrics

linked to physiological traits. While

conventional indices such as NDVI

(Normalized difference vegetative index) are

sensitive to general greenness, disease-

specific applications benefit from

integrating multiple indices sensitive to

pigments, water content, and senescence.

Indices such as NDWI (Normalized

difference water index), PSRI (Plant

senescence reflectance index), MCARI

(Modified chlorophyll absorption ratio

index), and PRI (Photochemical reflectance
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index) have shown strong associations with

disease stress. Studies consistently

demonstrate that combining multiple

indices within machine-learning

frameworks significantly improves

diagnostic accuracy compared to single-

index approaches. Disease-specific indices,

such as the Fusarium disease index

developed for wheat, further enhance

sensitivity and specificity by targeting

pathogen-relevant spectral features.

Among the various spectral indices, the

Red-edge normalized difference vegetation

index and disease water stress index could

be able to predict PLB infestation with

reliable accuracy level (Kundu et al., 2021).

Applications Across Pathosystems

Viral Diseases

Viral infections induce systemic

physiological stress, making them particularly

amenable to early detection using HSI.

Changes in stomatal conductance, pigment

composition, and water status alter spectral

signatures even in asymptomatic tissues.

Hyperspectral imaging has successfully

detected grapevine viruses, tobacco mosaic

virus, tomato spotted wilt virus, and cereal

viruses prior to visible symptom development.

Importantly, the hyperspectral sensing does

not detect the virus directly but serves as an

effective early-warning system by capturing

host stress responses.  Field and greenhouse

studies consistently report reliable

discrimination between infected and healthy

plants using VIS–NIR (Visible near infrared)

hyperspectral data coupled with machine

learning.

Fungal Diseases

Fungal pathogens have been

extensively studied using hyperspectral

imaging across cereals, vegetables, fruits,

and industrial crops. Fungal pathogens

induce localized and progressive structural

damage, pigment degradation, and water

loss, all of which produce distinct

hyperspectral signatures. Early detection

of rusts, blights, powdery mildew, and

Fusarium infections has been achieved at

leaf, canopy, and grain levels. HSI has been

successfully applied to detect fungal

diseases such as Fusarium head blight in

wheat, orange rust in sugarcane, and

powdery mildew in grapevine, often days

before visible symptoms appear. More

recently, Mukhopadhyay et al. (2025)

reported spectral insights into symptom

development and biochemical changes

during the advancement of cucumber

downy mildew disease. Studies

demonstrate that reflectance changes in

the visible, red-edge, and near-infrared

regions correlate strongly with fungal

colonization and mycotoxin accumulation,

enabling early intervention and improved

food safety. HSI has also been applied to

detect toxigenic fungi in stored grains,

demonstrating near-perfect classification

accuracy under controlled conditions.

Bacterial Diseases

Bacterial diseases often progress rapidly

and are difficult to manage once symptoms

appear. HSI has shown strong potential for

early detection of bacterial leaf blight in

rice and bacterial leaf spot in tomato

seedlings by identifying disease-induced

biochemical and structural changes. When

combined with advanced learning

frameworks such as convolutional neural

networks (CNN) and data augmentation

techniques, the hyperspectral analysis

achieves robust classification even with

limited training data.
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 Complex Disease Detection

In real-world conditions, crops frequently

experience multiple stresses simultaneously.

HSI excels in disentangling such complex

disease syndromes by leveraging high-

dimensional spectral information. It has

been used to differentiate overlapping

diseases and abiotic stresses, such as

distinguishing Huanglongbing from

drought stress in citrus and separating

mixed fungal–viral infections in grapevine

and sugar beet systems. This capability

positions HSI as a critical and reliable tool

for holistic plant health monitoring.

Table 1. Application of hyperspectral imaging system for detection of few important

crop diseases

Crops Diseases & HSI sensor / Key findings References

causal spectral range

organisms

Grapevine Grapevine vein- SPECIM IQ (400– Detected spectral deviations Nguyen et al.,

clearing virus 1000 nm) before visible symptoms 2021a

(GVCV)

Grapevine Leaf roll & Red VIS–NIR Early vineyard-scale Sudarshana

blotch viruses hyperspectral  discrimination of virus et al., 2015

(GLRaVs) sensors stress

Tobacco Tomato spotted VIS–NIR Virus detected as early as Krezhova

wilt virus (TSWV) hyperspectral 14 days post-inoculation et al., 2014

imaging

Wheat Soil borne wheat Visible (VIS), Scientists used one Haagsma,

mosaic virus 400–700 nm, machine-learning process et al., 2023

NIR, 700–2500 to build a categorization

nm, spectral model that automatically

regions. sorts pixels into symptomatic,

non-symptomatic, and

healthy groups.

Soybean Soybean yellow Most effective Random forest and k-nearest Ghimire,

mottle mosaic information neighbour, these two models et al., 2025

virus gained in a range were used to classify the

from 653 nm to infected and healthy plants

682 nm. ery accurate.

Wheat Fusarium head VIS–NIR HSI + PLS Early detection via DON- Polder

blight (Fusarium related spectral features et al., 2005

spp.)

Wheat Aspergillus, NIR HSI Up to 100% accuracy for Dowell

kernels Penicillium, (1000 –1600 nm) infected vs. healthy kernels et al., 1999

A. niger

Bok choy Fusarium VNIR HSI 99% accuracy within 1–2 Nguyen

commune, (445–728 nm) days post-infection et al., 2021b

Rhizoctonia solani
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Crops   Diseases &    HSI sensor /            Key findings References

  causal    spectral range

  organisms

Jujube Black spot Visible and near- During postharvest storage, Jiang,

caused by infrared (Vis-NIR, both Vis–NIR and NIR et al.,  2023.

Alternaria 400–1000 nm) hyperspectral imaging

alternata and short-wave techniques showed a good

infrared (SWIR, ability to detect black spot

1000–2000 nm) infection in winter jujubes.

spectral regions Additionally, the spectrum

data from VIS–NIR HSI made

it possible to clearly visualize

the disease’s evolution in

space, making it possible to

discriminate between the

fruit’s infected areas at each

stage of the pathogen’s

development.

Peach Gray mold

(Botrytis cinerea) Application of PCA (Principal Sun,

Soft rot VIS-NIR region component analysis) et al.,  2018.

(Rhizopus stolonifer ) (400-1000) nm decreased the large

Anthracnose dimensionality of the

(Colletotrichum  hyperspectral imaging.

acutatum)

Apple Botrytis VIS-NIR region CNN and PRS were used to Zhu,

cinereaRhizopus (400-1000) nm skillfully obtain the best et al.,  2023

stolonifer determinants of the degree

of the infection.

Citrus Anthracnose Machine learning algorithms Tang,

(Colletotrichum VIS-NIR region  were practically used to assess  et al.,  2023.

gleosporioides )  the disease detection

performance.

Tomato Bacterial leaf VIS–NIR HSI + ML Early greenhouse detection Zhang

seedlings spot before field transfer et al., 2024

Citrus Huanglongbing UAV HSI + Red-edge signatures separated Zarco-Tejada

(CLas) vs drought thermal  biotic and abiotic stress et al., 2021
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RGB-to-Hyperspectral Spectral

Reconstruction for Plant Disease

Applications

Recent advances in RGB-to-

hyperspectral (RGB to HSI) spectral

reconstruction provide a cost-effective

alternative to direct hyperspectral sensing,

addressing the limited availability and high

cost of HSI hardware in agricultural

applications. Spectral reconstruction, also

known as spectral super-resolution, aims

to recover dense hyperspectral signatures

from standard RGB images by learning

spatial–spectral correlations from

hyperspectral datasets. State-of-the-art

deep learning approaches, including

transformer-based architectures such as

MST++ (Cai et al., 2022) and SPECAT (Yao

et al., 2024), as well as label-efficient pixel-

level reconstruction frameworks (Leng et

al., 2025), have demonstrated strong

performance in reconstructing high-fidelity

hyperspectral data from RGB inputs. While

these methods have primarily been

evaluated on general-purpose benchmark

datasets, their relevance to plant disease

detection is increasingly evident, as

disease-induced physiological changes

such as chlorophyll degradation, water

stress, and red-edge shifts exhibit

structured spectral patterns that can be

partially inferred from RGB observations.

Integrating RGB to HSI reconstruction into

plant disease monitoring pipelines enables

broader deployment of spectral analysis

using consumer-grade imaging devices,

while retaining much of the diagnostic

value associated with hyperspectral data

for early disease detection.

Remote Sensing Platforms and Future

Integration

Initially, hyperspectral imaging

applications in Plant Pathology were largely

confined to proximal sensing under

controlled laboratory or greenhouse

conditions, where they provided critical

insights into plant–pathogen interactions

and disease physiology (Mahlein et al.,

2012). However, advances in sensor

miniaturization and improved portability

have transformed HSI from a research-

oriented technique into a field-deployable

remote sensing technology. Hyperspectral

sensors can now be mounted on ground-

based platforms, unmanned aerial vehicles

(UAVs), and satellite systems, enabling

scalable disease monitoring under realistic

agricultural conditions (Govender et al.,

2009; Zarco-Tejada et al., 2019). Rapidly

developed remote sensing technology offers

strong technical support for the non-

destructive disease detection and

monitoring of crop diseases in large scale

(Dhingra et al., 2018; Zhu et al., 2018).

Remote sensors provide a synoptic view of

the crop condition in a periodic manner

over extensive areas simultaneously and

capture the subtle canopy reflectance

variabilities caused due to changes in the

bio-optical response of vegetation canopy

as a result of biotic and/or abiotic stress

(Xue and Su, 2017).

Among available platforms, UAV-based

hyperspectral systems currently dominate

operational research and precision

agriculture applications. UAVs offer an

optimal compromise between spatial

resolution and coverage, bridging the gap

between ground observations and satellite

remote sensing. Their ability to acquire
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high-resolution and repeatable imagery

allows early detection of disease hotspots

and accurate mapping of disease severity.

UAV-based HSI has been successfully

applied to detect fungal, bacterial, and viral

diseases in crops such as wheat, potato,

grapevine, citrus, and olive, often several

days to weeks before visible symptoms

appear (Gold et al., 2020; Zhang et al.,

2024). For example, hyperspectral UAV

observations enabled pre-symptomatic

detection of late blight and early blight in

potato by capturing disease-specific

changes in leaf water content and internal

structure (Gold et al., 2020).

Traditionally, the HSI systems were

large, complex and expensive. NASA’s EO-

1 Hyperion (2000 to 2017), pioneered

Hyperion hyperspectral imager, which

collected 220 detailed spectral bands for

precise mapping of land, water, and

atmosphere at 30 m resolution (https://

cmr.earthdata.nasa.gov/search/concepts/

C1220567951-USGS_LTA.html). Recently,

there has been significant development in

sensor design and small satellite

technology (CubeSats) which led to the

development of and cost-effective,

miniaturized HSI payloads. The recently

launched Pixxel’s Firefly in August, 2025

(https://www.pixxel.space/firefly ) is

capable to capture about 135 spectral

bands at a 5-meter resolution across a 40-

kilometre swath. The Copernicus

Hyperspectral Imaging Mission for the

Environment (CHIME), the future mission

of European Space Agency (ESA) will

capture earth image in over 200 spectral

bands, with a 30-meter resolution to

support of environmental and resource

monitoring.

Despite these advantages, challenges

remain related to data volume, sensor

sensitivity under variable illumination, and

integration across sensing platforms.

Differences in spatial resolution, spectral

configuration, and data formats complicate

data fusion between proximal, UAV, and

satellite systems. Furthermore,

hyperspectral datasets require advanced

analytical frameworks to address

redundancy, noise, and limited labeled

samples. Recent studies demonstrate that

coupling HSI with machine learning and

deep learning significantly improves

robustness and classification accuracy in

field environments (Rumpf et al., 2011;

Wan et al., 2022).

Looking ahead, the future of

hyperspectral remote sensing for plant

disease detection lies in system integration

and increasing autonomy. Climate change

and globalized trade are accelerating the

spread of plant pathogens, heightening the

demand for rapid, non-invasive, and

scalable surveillance tools. Hyperspectral

sensing stands out among remote sensing

technologies due to its ability to

discriminate disease types, map affected

areas, and quantify severity using

continuous spectral information.

Integration of HSI with complementary

sensors such as thermal imaging and

LiDAR is expected to enhance diagnostic

reliability by combining physiological,

thermal, and structural indicators (Zarco-

Tejada et al., 2021). Moreover, emerging

satellite-based hyperspectral missions hold

promise for regional-scale disease

surveillance, complementing high-

resolution UAV observations. Together,

these advances position hyperspectral

remote sensing as a cornerstone
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technology for next-generation precision

agriculture and proactive plant health

management.

To extend plant disease monitoring

from field- and plot-level analysis to

regional and national scales, recent

research increasingly focuses on satellite-

only and satellite–ground fusion

frameworks that emphasize both scalability

and interpretability. Multispectral satellite

imagery from sensors such as Sentinel-2

(ESA, Copernicus Mission), Landsat-8/9

(Roy et al., 2014), PlanetScope  and MODIS

(Justice et al., 2002) enables continuous,

large-area observation of crop conditions

when coupled with robust pre-processing

pipelines, including atmospheric

correction, cloud and shadow masking,

and cross-sensor spectral harmonization.

Disease-relevant signals can be enhanced

through the integration of interpretable

vegetation indices related to chlorophyll

content, canopy structure, red-edge

dynamics and photosynthetic stress,

optionally augmented with climatic and

soil moisture data to disentangle biotic

stress from environmental variability.

Attention-based classifiers, such as

transformer or U-Net variants, allow spatial

context to be incorporated into per-pixel

health classification, while emerging

vision–language model (VLM) frameworks

enable the generation of natural-language

explanations grounded in spectral and

index evidence. To mitigate the inherent

spatial-resolution limitations of satellite

imagery, dual-encoder contrastive learning

approaches can be proposed that align

satellite representations with fine-grained

ground-level observations, allowing

satellite models to inherit plant-level

disease cues during training while

remaining satellite-only at inference.

Together, these strategies offer a promising

pathway for scalable, explainable crop

disease surveillance that bridges local

diagnostics and large-scale agricultural

decision-making.

Data Analysis Advances and Challenges

Modern hyperspectral systems capture

dozens to hundreds of narrow spectral

bands, enabling detailed characterization

of plant physiological and biochemical

properties. While this richness enhances

diagnostic potential, it also introduces

substantial computational and analytical

challenges, particularly for platforms with

limited onboard processing capacity such

as satellites. Consequently, hyperspectral

data analysis has evolved into a dynamic

research field focused on transforming

high-dimensional observations into

actionable agricultural insights. One of the

principal challenges in hyperspectral image

classification is the Hughes phenomenon,

where increasing spectral dimensionality

combined with limited labeled samples

leads to reduced model performance.

Feature engineering and active learning

strategies have emerged as effective

solutions to this problem. By selectively

identifying the most informative samples

for annotation, active learning reduces

labeling requirements while improving

classifier generalization under data-scarce

conditions. This targeted approach is

especially valuable for agricultural

applications, where ground truth data

collection is labour-intensive and costly.

In parallel, there has been a notable

shift from traditional machine-learning

methods toward deep learning

architectures capable of jointly exploiting
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spatial and spectral information. Although

originally developed for natural image

analysis, deep learning models are

increasingly adapted to hyperspectral data

by addressing challenges related to

massive data volumes, spectral

redundancy, and spatial–spectral

resolution trade-offs. These developments

have substantially improved classification,

accuracy and robustness. More recently,

integrated analytical frameworks have

been proposed to enhance early plant

disease diagnosis. These systems combine

spatial segmentation techniques to isolate

highly informative, early symptomatic

regions with advanced preprocessing

methods to improve data quality. Final

disease classification is achieved using

deep networks that integrate chlorophyll-

related indices with spectral–spatial

features. Collectively, these innovations

represent a significant step toward fast,

accurate, and scalable hyperspectral-

based disease detection systems for

precision agriculture.

The high dimensionality of hyperspectral

data introduces challenges including

redundancy, noise, and limited labeled

datasets. Feature selection, dimensionality

reduction, and active learning strategies

are essential to mitigate the Hughes

phenomenon. Recent shifts toward deep

learning architectures have improved

spatial–spectral feature extraction and

classification accuracy. Integrated

frameworks combining segmentation,

preprocessing, and advanced neural

networks demonstrate superior

performance for early disease detection.

However, challenges related to data

standardization, computational demands,

and generalizability remain significant.

In addition to improving predictive

performance, interpretability and

explainability have become important

analytical considerations in hyperspectral-

based plant disease detection. Deep

spatial–spectral models often learn

complex representations that are difficult

to relate directly to underlying plant

physiological processes, limiting

transparency and user trust. Recent

approaches, therefore, emphasize linking

predictions to meaningful spectral bands,

vegetation indices, or spatial regions

through attention visualization, saliency

mapping, and spectral attribution.

Emerging vision–language model (VLM)

integrations further extend interpretability

by translating spectral–spatial evidence

into concise natural-language

explanations, enabling models to

communicate diagnostic reasoning in

human-readable form. Despite these

advances, ensuring reliable and consistent

explanations across crops, sensors, and

environmental conditions remains an open

challenge.

Conclusion

Hyperspectral imaging has established

itself as a powerful, non-destructive tool

for early plant disease detection, capable

of identifying asymptomatic infections

across diverse pathosystems. Its ability to

capture mechanistic physiological changes

provides a decisive advantage over

conventional diagnostics. Despite its

potential, HSI faces hurdles including: i.

Data complexity: Large volumes of data and

the “curse of dimensionality” (Hughes

phenomenon) require advanced

dimensionality reduction like PCA or band

selection. ii. Environmental sensitivity:
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Fluctuations in illumination and

background noise necessitate rigorous

calibration. iii. Cost: While HSI matches

the speed of some laboratory tests, it

remains less cost-effective than standard

RGB or thermal imaging.

To achieve large-scale operational

adoption, future research must prioritize

sensor affordability, protocol standardization,

robust data pipelines, and integration with

decision-support systems. Addressing data

bottlenecks through transfer learning and

synthetic data generation will be critical.

Future research focusing on cost reduction

and the development of robust, field-

deployable machine learning models will

be essential for the widespread adoption

of HSI in global disease surveillance.

Ultimately, the convergence of hyperspectral

sensing, machine intelligence, and

autonomous platforms holds transformative

potential for precision phytopathology and

sustainable agriculture.
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