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ABSTRACT

Understanding how soil organic carbon (SOC) varies across landscapes is

essential for sustainable land management. This study used Automatic

Machine Learning to generate high-resolution SOC maps for two districts

in Gujarat, integrating 1,171 local samples from Anand and Surendranagar

with global SOC information from World Soil Information System data and

a suite of soil, climate, vegetation, and terrain covariates. All environmental

variables were standardized to 30-m resolution for modelling. The Gradient

Boosting Machine performed best locally (R²: 0.49 training, 0.35 testing),

while the Stacked Ensemble model showed superior performance globally

(R²: 0.87 training, 0.70 testing). Annual precipitation (the highest-ranked

predictor in the local model) and long-term maximum EVI (the most

influential variable in the global model) emerged as dominant predictors of

SOC across the two modelling scales. The resulting SOC maps can support

site-specific soil management, carbon accounting, and climate-resilient

land-use planning in data-scarce regions.

Keywords : Soil Organic Carbon, EVI, Automatic Machine Learning

Introduction

Reliable spatial information on soil

attributes that regulate landscape functions

and ecosystem services is essential for

sustainable land management. Since soil

organic matter plays a central role in

maintaining soil fertility, sustainable

agriculture frameworks highlight its careful

management (Shibu et al., 2006). Soil

organic carbon (SOC) is fundamental to soil

functioning: it supports nutrient supply to

plants, promotes soil aggregation and

structural stability, enhances water-holding

capacity, and sustains the soil biotic

community (Schoonover and Crim, 2015).

Increasing SOC stocks not only improves soil

quality and productivity but also contributes

to reducing greenhouse gas emissions

(Viscarra Rossel et al., 2016). Because soils

can sequester carbon at comparatively high

rates, they offer substantial potential for

mitigating climate change impacts by

counterbalancing fossil-fuel-related

emissions (Conant et al., 2011; Lal, 2004).

Adoption of improved land- and crop-

management practices can further increase
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yields, particularly in degraded landscapes,

thereby supporting food security (Denton
et al., 2014). High-resolution SOC maps are
therefore valuable both for environmental
assessments of carbon sequestration and
for agricultural management. For site-
specific crop management, digital SOC

mapping is especially important
(Dobermann and Ping, 2004).

Digital soil mapping (DSM) has become

increasingly common for predicting soil
properties because it enables efficient
spatial estimation using environmental
covariates (Lagacherie and McBratney,
2007). DSM is grounded in the CLORPT
concept (Jenny, 1941) and its extension, the

SCORPAN framework, which relate soil
variation to soil (s), climate (c), organisms
(o), relief (r), parent material (p), age (a), and
spatial position (n) (McBratney et al., 2003).
A range of statistical and geostatistical
approaches has been applied to model the

relationships between these factors and soil
attributes. These include regression-kriging
(Hengl et al., 2004), decision tree-based
models (Henderson et al., 2005), neural
networks (Mansuy et al., 2014; Malone et
al., 2009), multiple linear regression (Powers

and Schlesinger, 2002), and generalized
linear models (McKenzie and Ryan, 1999).
Accordingly, the aims of the present study
were: (i) to build SOC predictive models
using both global and local datasets and
compare their performance, (ii) to identify

the environmental variables most strongly

influencing SOC estimates in each

modelling framework, and (iii) to produce

high-resolution SOC maps for two districts

in Gujarat, India.

Materials and Methods

Study Area and Soil Sampling

The study was conducted in Anand and

Surendranagar districts of Gujarat, India

(Figure 1). Anand lies in alluvial and

piedmont plains with mildly calcareous,

slightly alkaline, poorly drained soils

dominated by Ocrepts and Usterts.

Surendranagar comprises shallow

medium-black soils derived from Deccan

basalts and deep black alluvial soils. Both

districts experience high annual

temperatures (30.7–31.2°C) and low

rainfall (25–34 mm).

Soil samples were collected in March

2018, a period of minimal soil moisture

variation. Sampling locations were selected

using stratified random sampling based on

Sentinel-2 bare soil reflectance and

previous-season crop information. At each

site, a quincunx (five-point) sampling

pattern within a 20–30 m² quadrat was

used, with 0–5 cm depth samples

composited to ~250 g. GPS coordinates

were recorded for each quadrat with an

estimated horizontal accuracy of ±3–5 m.

SOC was measured using the Walkley and

Black (1934) wet oxidation method.

Sampling details are provided in Table 1.

Table 1. Specifications of the sites in Gujarat

Place Area Covered Time of No. of soil samples

(km2) Sampling collected

Anand 142.8 March 2018 1081

Surendranagar 431.2 March 2018 90

Total no. of samples 1171
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Figure 1. Map showing locations of soil samples collected from Anand and

Surendranagar districts

ISRIC World Soil Information System

(WoSIS) data

Global SOC data were sourced from the

ISRIC World Soil Information System (WoSIS)

snapshots (Figure 2). SOC values (g kg-¹) were

converted to percentage using a factor of 10.

From 64,118 profiles, filtering for 0–15 cm

depth, Walkley–Black method, and SOC ≤

10% yielded 18,818 usable points.

Environmental Covariates

Environmental covariates were selected

following the SCORPAN framework and

included soil, climate, vegetation, and relief

variables (Table 2). Spatial resolutions

ranged from 1 km (climate) to 30 m (relief).

A total of 43 covariates were used for

modelling.
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Figure 2. Location of soil profiles provided with WoSIS.

(Source: https://data.isric.org)

Table 2. Environmental covariates used to predict soil organic carbon

Covariate                       Source Spatial Resolution

Soil Soil Grids 250M v2.0, USDA Soil Taxcnomy 250 m

Climate World Clim version 1 1 km

Organism MODIS 250 m

Relief NASA SRTM 30 m
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Soil Properties

Six soil properties at 0–5 cm depth

(Bulk density, CEC, clay, sand, silt, pH)

were obtained from SoilGrids 250 m v2.0

via Google Earth Engine (GEE).

Descriptions and unit conversions are

shown in Table 3.

Climatic Variables

Climate variables (temperature,

precipitation, and BIOCLIM variables) were

obtained from WorldClim v1 through GEE.

All layers were stacked and extracted for

local and global datasets (Table 4). Climatic

variables originally available at 1-km

resolution (WorldClim v1) were resampled

to 30 m in Google Earth Engine using its

image pyramid framework, which selects

the closest lower-resolution pyramid level

and applies nearest-neighbour resampling

by default. Downscaling coarse-resolution

climate layers does not generate new

climatic information at finer spatial scales

and may introduce smoothing or

resampling artefacts. Consequently, the

resampled climate variables represent

regional-scale climatic gradients rather

than true microclimatic variability, and

their influence on SOC prediction is

interpreted accordingly.

Table 3. Soil properties used in the study

Soil Description Mapped Conversion Conventional

Property units factor units

BD Bulk density of the fine earth eg/cm3 100 kg/dm3

fraction

CEC Cation Exchange Capacity of mmol(c)/kg 10 cmol(c)/kg

the soil

Clay Proportion of clayparticles (< g/kg 10 g/100 (%)

 in the fine earth fraction 0.002 mm)

Sand Proportion of sand particles (> g/kg 10 g/100g (%)

in the fine earth fraction 0.05 mm)

Silt Proportion of silt particles (≥ g/kg 10 g/100g (%)

0.002 mm and ≤ 0.05 mm)

 in the fine earth fraction

pH Soil pH pHx10 10 pH

Vegetation Attributes

Vegetation indices (EVI and NDVI) were

derived from MOD13Q1 (250 m, 16-day

composites; 2001–2022). Long-term annual

maximum/minimum EVI and NDVI ranges

were computed and extracted using GEE.
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Table 4. Climatic variables used in the study

Name Description

tavg Mean temperature, 0C

tmin Minimum temperature,  0C

tmax Maximum temperature, 0C

prec Precipitation, mm

bio01 Annual mean temperature, 0C

bio02 Mean diurnal range (mean of monthly (max tem - min tem)), 0C

bio03 Isothermality (bio02/bio07 * 100), %

bio04 Temperature seasonality (Standard deviation * 100), 0C

bio05 Max temperature of warnest month, 0C

bio06 Min temperature of coldest month, 0C

bio07 Temperature annual range, 0C

bio08 Mean temperature of wettest quarter, 0C

bio09 Mean temperature of driest quarter, 0C

bio10 Mean temperature of warmest quarter, 0C

bio11 Mean temperature of coldest quarter, 0C

bio12 Annual precipitation, mm

bio13 Precipitation of wettest month, mm

bio14 Precipitation of driest month, mm

bio15 Precipitation seasonality (Coefficient of Variation)

bio16 Precipitation of wettest quarter, mm

bio17 Precipitation of driest quarter, mm

bio18 Precipitation of warmest quarter, mm

bio19 Precipitation of warmest quarter, mm
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Topographic Parameters

Topographic variables (Slope, Aspect,

Hillshade, Relief, TPI, TRI) were derived

from the 30-m SRTM DEM on GEE and

extracted for all sample points.

Figure 3. Methodology Flowchart

Data Preparation for SOC Prediction

All covariates were merged into a

unified CSV dataset. Environmental

rasters were downscaled to 30 m using

GEE image pyramids to ensure consistency

across layers. Individual rasters were

stacked to form a single multiband layer

used for prediction modeling. The overall

workflow is shown in Figure 3.

Soil Organic Carbon Prediction

Predictive modelling was conducted in

RStudio using AutoML with automated

hyperparameter optimization; no manual

tuning was performed. The response

variable was SOC for the local dataset and

log-transformed SOC for the global dataset.

Log transformation was applied only to the

global SOC dataset to address skewness and

heteroscedasticity associated with its wider

value range, whereas the local dataset

exhibited a narrower distribution and did not

require transformation. Data were split into

training (60%), validation (20%), and testing

(20%). AutoML (300-second runtime)

automatically evaluated multiple algorithms

(GBM, DRF/XRT, GLM, Deep Learning, and

Stacked Ensemble) with cross-validation

(Table 5). Upon completion, the leaderboard

was examined to identify the top-performing

models based on evaluation metrics such as

Root Mean Squared Error (RMSE) and R2.

Permutation Variable Importance

Variable importance was assessed

using permutation importance through the
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H
2
O interface. The Fisher–Yates shuffle was

applied to each predictor, and loss in model

accuracy (difference in RMSE or R² from

baseline) quantified its importance. This

method provided insights into the relative

influence of climate, soil, vegetation, and

relief factors on SOC prediction.

Table 5. Models used in AutoML

Model Description

DRF This includes both the Distributed Random Forest (DRF) and

Extremely Randomized Trees (XRT) models.

GLM Generalized Linear Model with regularization

GBM Gradient Boosting Machine

Deep Learning Fully-connected multi-layer artificial neural network.

Stacked Ensemble Stacked Ensembles, includes an ensemble of all the base models

and ensembles using subsets of the base models.

Results and Discussion

Prediction Model Performance

Local Scale model using ground truth

data

The Gradient Boosting Machine (GBM)

stood out as the best model among the

algorithms tested for predicting SOC

content at the local scale. It achieved a R2

value of 0.49 on the training data and 0.35

on the testing data and RMSE values of

0.05 and 0.06 on the training and testing

data, respectively, indicating its ability to

capture the relationship between

environmental factors and SOC. algorithms

tested for predicting SOC content at the

local scale. It achieved a R2 value of 0.49

on the training data and 0.35 on the testing

data and RMSE values of 0.05 and 0.06

on the training and testing data,

respectively, indicating its ability to capture

the relationship between environmental

factors and SOC. The observed versus

predicted plots for both training and testing

data revealed a strong linear trend between

observed and predicted SOC values,

indicating that the model captured the

dominant relationships between SOC and the

selected environmental covariates (Figure 4).

Global Scale model using WoSIS data

For the global-scale model using WoSIS

data, the Stacked Ensemble algorithm

emerged as the top-performing model. With

high R2 values of 0.87 on the training set

and 0.70 on the testing set, and RMSE

values of 0.29 and 0.33 on the training and

testing data, respectively, the Stacked

Ensemble algorithm exhibited strong

predictive performance in estimating SOC

content. Examination of the observed

versus predicted plots further confirmed

the model’s effectiveness, revealing its

ability to capture the underlying patterns
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and relationships between the

environmental covariates and SOC

content. Observed versus predicted plots

showed a strong linear trend between

observed and predicted SOC values,

confirming the ability of the Stacked

Ensemble model to represent underlying

SOC–environment relationships (Figure 5).

Figure 4. a) observed vs. predicted for training data and b) observed vs.  predicted

for testing data in the local scale model

Therefore, it can be concluded that the

Stacked Ensemble model provides a

reliable tool for predicting SOC content at

the global scale, offering valuable insights

into soil dynamics and environmental

processes, capturing better variability than

the local model (Table 6). The digital maps

of SOC (%) produced by local and global

models are shown in (Figure 6).

Figure 5. a) observed V/S predicted for training data and b) observed vs. predicted

for testing data in the global scale model
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Table 6. Performance matrix of local and global models

Local model Global model

Training Testing Training Testing

R2 0.49 0.35 0.87 0.70

RMSE 0.05 0.06 0.29 0.33

Figure 6.a) SOC (%) map for Anand using the local model and b) SOC (%) map for

Anand using the global model

Variable Importance

Variable Importance for the local

scale model

In the variable importance analysis for

the local-scale model, it was found that

bio12 (Annual precipitation, mm) emerged

as the most influential variable, followed

by elevation and bio04 (Temperature

seasonality (Standard deviation * 100), ° C).

Among the top 10 important variables,

there were four from Climate, four from Soil

and two from Relief, indicating a diverse

range of factors impacting SOC content

prediction (Figure 7). Notably, in the

Gujarat region, bio12 appeared as the most

influential variable, indicating that

variations in this climatic variable would

exert the most
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Figure 7.  Permutation variable importance for the local scale model

Figure 8. Permutation variable importance Boxplots for the local scale model
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significant influence on SOC content

prediction (Figure 8). This underscores the

importance of considering regional climatic

conditions, such as mean temperature

during the driest quarter and precipitation,

when assessing SOC dynamics and

developing predictive models at the local

scale.

Variable Importance for the global

scale model

In the variable importance analysis for

the global-scale model, long-term average

annual max EVI (NDVI_MAX) emerged as

the most influential variable, as determined

by Permutation Variable Importance.

Among the top 10 important variables,

three were Soil properties, three were

Climatic variables, three were Vegetation

parameters, and one was a Relief

parameter (Figure 9). This diversity in

influential variables underscores the

complex interplay of environmental factors

influencing SOC content prediction at a

global scale. Additionally, analysis of

boxplots revealed that Vegetation and

Climatic variables exerted the most

prominent effects on the prediction of SOC

content, further highlighting their

significance in driving SOC dynamics on a

broader spatial scale (Figure 10). These

findings underscore the importance of

considering multiple environmental

variables, particularly those related to

vegetation and climate, when assessing

SOC dynamics and developing predictive

models at the global scale.

Figure 9. Permutation variable importance for the global scale model
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Figure 10. Permutation variable importance boxplot for global scale model

Conclusion

This study demonstrates that

Automatic Machine Learning can effectively

integrate multiscale remote sensing,

climatic, soil, and terrain data to generate

high-resolution maps of SOC. The Gradient

Boosting Machine performed best at the

local scale, while the Stacked Ensemble

model showed superior performance at the

global scale, highlighting the importance

of scale-aware model selection. Variable-

importance analysis consistently identified

annual precipitation and long-term

maximum EVI as dominant predictors of

SOC, emphasizing the combined role of

climate and vegetation dynamics in

regulating SOC variability. From a practical

perspective, the generated SOC maps can

support site-specific soil and nutrient

management, identification of low-carbon

zones requiring restorative practices, and

land-use planning under climate

variability. For policymakers, these spatial

products can aid in carbon accounting,

prioritization of soil conservation

interventions, and monitoring of soil health

indicators at regional scales, particularly

in data-scarce environments. Several

limitations should be acknowledged.

Climatic variables were downscaled from

coarse-resolution datasets and therefore

represent regional climatic gradients rather

than true microclimatic variability. In

addition, differences in sampling density

and SOC value distributions between local

and global datasets influenced model

performance and comparability. While

ensemble models demonstrated strong

predictive skill, their complexity also limits

direct physical interpretability. Future

research should focus on incorporating

higher-resolution hyperspectral imagery,

proximal sensing data, and deep learning

architectures to better capture soil–

vegetation–climate interactions at finer

scales. Expanding the framework to
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include temporal dynamics, uncertainty

quantification, and independent regional

validations would further enhance the

robustness and applicability of SOC

mapping for sustainable land management

and climate-resilient agriculture.
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