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ABSTRACT

Understanding how soil organic carbon (SOC) varies across landscapes is
essential for sustainable land management. This study used Automatic
Machine Learning to generate high-resolution SOC maps for two districts
in Gujarat, integrating 1,171 local samples from Anand and Surendranagar
with global SOC information from World Soil Information System data and
a suite of soil, climate, vegetation, and terrain covariates. All environmental
variables were standardized to 30-m resolution for modelling. The Gradient
Boosting Machine performed best locally (R?: 0.49 training, 0.35 testing),
while the Stacked Ensemble model showed superior performance globally
(R?: 0.87 training, 0.70 testing). Annual precipitation (the highest-ranked
predictor in the local model) and long-term maximum EVI (the most
influential variable in the global model) emerged as dominant predictors of
SOC across the two modelling scales. The resulting SOC maps can support
site-specific soil management, carbon accounting, and climate-resilient
land-use planning in data-scarce regions.
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Introduction capacity, and sustains the soil biotic
community (Schoonover and Crim, 2015).
Increasing SOC stocks not only improves soil
quality and productivity but also contributes

Reliable spatial information on soil
attributes that regulate landscape functions
and ecosystem services is essential for ) —
sustainable land management. Since soil ~ © reducing greenhouse gas CImMISSIons
organic matter plays a central role in (Viscarra Rossel et al., 2016). Because soils
maintaining soil fertility, sustainable Cansequester carbon at comparatively high
agriculture frameworks highlight its careful ~ rates, they offer substantial potential for
management (Shibu et al., 2006). Soil  mitigating climate change impacts by
organic carbon (SOC) is fundamental tosoil =~ counterbalancing fossil-fuel-related
functioning: it supports nutrient supply to ~ emissions (Conant et al., 2011; Lal, 2004).
plants, promotes soil aggregation and Adoption of improved land- and crop-
structural stability, enhances water-holding =~ management practices can further increase
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yields, particularly in degraded landscapes,
thereby supporting food security (Denton
etal., 2014). High-resolution SOC maps are
therefore valuable both for environmental
assessments of carbon sequestration and
for agricultural management. For site-
specific crop management, digital SOC
mapping is especially important
(Dobermann and Ping, 2004).

Digital soil mapping (DSM) has become
increasingly common for predicting soil
properties because it enables efficient
spatial estimation using environmental
covariates (Lagacherie and McBratney,
2007). DSM is grounded in the CLORPT
concept (Jenny, 1941) and its extension, the
SCORPAN framework, which relate soil
variation to soil (s), climate (c), organisms
(0), relief (r), parent material (p), age (a), and
spatial position (n) (McBratney et al., 2003).
A range of statistical and geostatistical
approaches has been applied to model the
relationships between these factors and soil
attributes. These include regression-kriging
(Hengl et al., 2004), decision tree-based
models (Henderson et al.,, 2005), neural
networks (Mansuy et al., 2014; Malone et
al., 2009), multiple linear regression (Powers
and Schlesinger, 2002), and generalized
linear models (McKenzie and Ryan, 1999).
Accordingly, the aims of the present study
were: (i) to build SOC predictive models
using both global and local datasets and
compare their performance, (ii) to identify
the environmental variables most strongly
influencing SOC estimates in each

modelling framework, and (iii) to produce
high-resolution SOC maps for two districts
in Gujarat, India.

Materials and Methods
Study Area and Soil Sampling

The study was conducted in Anand and
Surendranagar districts of Gujarat, India
(Figure 1). Anand lies in alluvial and
piedmont plains with mildly calcareous,
slightly alkaline, poorly drained soils
dominated by Ocrepts and Usterts.
Surendranagar comprises shallow
medium-black soils derived from Deccan
basalts and deep black alluvial soils. Both
districts experience high annual
temperatures (30.7-31.2°C) and low
rainfall (25-34 mm).

Soil samples were collected in March
2018, a period of minimal soil moisture
variation. Sampling locations were selected
using stratified random sampling based on
Sentinel-2 bare soil reflectance and
previous-season crop information. At each
site, a quincunx (five-point) sampling
pattern within a 20-30 m? quadrat was
used, with 0-5 cm depth samples
composited to ~250 g. GPS coordinates
were recorded for each quadrat with an
estimated horizontal accuracy of +3-5 m.
SOC was measured using the Walkley and
Black (1934) wet oxidation method.
Sampling details are provided in Table 1.

Table 1. Specifications of the sites in Gujarat

Place Area Covered Time of No. of soil samples
(km?) Sampling collected

Anand 142.8 March 2018 1081

Surendranagar 431.2 March 2018 90

Total no. of samples 1171
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Figure 1. Map showing locations of soil samples collected from Anand and

Surendranagar districts

ISRIC World Soil Information System
(WoSIS) data

Global SOC data were sourced from the
ISRIC World Soil Information System (WoSIS)
snapshots (Figure 2). SOC values (g kg') were
converted to percentage using a factor of 10.
From 64,118 profiles, filtering for 0-15 cm
depth, Walkley—Black method, and SOC <
10% yielded 18,818 usable points.

Environmental Covariates

Environmental covariates were selected
following the SCORPAN framework and
included soil, climate, vegetation, and relief
variables (Table 2). Spatial resolutions
ranged from 1 km (climate) to 30 m (relief).
A total of 43 covariates were used for
modelling.
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Table 2. Environmental covariates used to predict soil organic carbon

Covariate Source Spatial Resolution
Soil Soil Grids 250M v2.0, USDA Soil Taxcnomy 250 m
Climate World Clim version 1 1 km
Organism MODIS 250 m

Relief NASA SRTM 30 m

Figure 2. Location of soil profiles provided with WoSIS.
(Source: https://data.isric.org)
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Soil Properties

Six soil properties at 0-5 cm depth
(Bulk density, CEC, clay, sand, silt, pH)
were obtained from SoilGrids 250 m v2.0
via Google Earth Engine (GEE).
Descriptions and unit conversions are
shown in Table 3.

Climatic Variables

Climate variables (temperature,
precipitation, and BIOCLIM variables) were
obtained from WorldClim v1 through GEE.
All layers were stacked and extracted for
local and global datasets (Table 4). Climatic
variables originally available at 1-km

Table 3. Soil properties used in the study

resolution (WorldClim v1) were resampled
to 30 m in Google Earth Engine using its
image pyramid framework, which selects
the closest lower-resolution pyramid level
and applies nearest-neighbour resampling
by default. Downscaling coarse-resolution
climate layers does not generate new
climatic information at finer spatial scales
and may introduce smoothing or
resampling artefacts. Consequently, the
resampled climate variables represent
regional-scale climatic gradients rather
than true microclimatic variability, and
their influence on SOC prediction is
interpreted accordingly.

Soil Description Mapped Conversion Conventional

Property units factor units

BD Bulk density of the fine earth eg/cm?® 100 kg/dm?
fraction

CEC Cation Exchange Capacity of mmol(c)/kg 10 cmol(c)/kg
the soil

Clay Proportion of clayparticles (< g/kg 10 g/100 (%)
in the fine earth fraction 0.002 mm)

Sand Proportion of sand particles (> g/kg 10 g/100g (%)
in the fine earth fraction 0.05 mm)

Silt Proportion of silt particles (=g/kg 10 g/100g (%)
0.002 mm and < 0.05 mm)
in the fine earth fraction

pH Soil pH pHx10 10 pH

Vegetation Attributes composites; 2001-2022). Long-term annual

Vegetation indices (EVI and NDVI) were
derived from MOD13Q1 (250 m, 16-day

maximum/minimum EVI and NDVI ranges
were computed and extracted using GEE.
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Table 4. Climatic variables used in the study

Name Description

tavg Mean temperature, °C

tmin Minimum temperature, °C

tmax Maximum temperature, °C

prec Precipitation, mm

bio01 Annual mean temperature, °C

bio02 Mean diurnal range (mean of monthly (max tem - min tem)), °C
bio03 Isothermality (bio02/bio07 * 100), %

bio04 Temperature seasonality (Standard deviation * 100), °C
bio05 Max temperature of warnest month, °C

bio06 Min temperature of coldest month, °C

bio07 Temperature annual range, °C

bio08 Mean temperature of wettest quarter, °C

bio09 Mean temperature of driest quarter, °C

bio10 Mean temperature of warmest quarter, °C

bioll Mean temperature of coldest quarter, °C

bio12 Annual precipitation, mm

biol3 Precipitation of wettest month, mm

biol4 Precipitation of driest month, mm

biol5 Precipitation seasonality (Coefficient of Variation)
biol6 Precipitation of wettest quarter, mm

biol7 Precipitation of driest quarter, mm

biol8 Precipitation of warmest quarter, mm

bio19 Precipitation of warmest quarter, mm
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Topographic Parameters

Topographic variables (Slope, Aspect,
Hillshade, Relief, TPI, TRI) were derived

from the 30-m SRTM DEM on GEE and
extracted for all sample points.

| Legacy Soil
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— o »  Fitting
. Testing, Importance
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Digital Soil
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Figure 3. Methodology Flowchart

Data Preparation for SOC Prediction

All covariates were merged into a
unified CSV dataset. Environmental
rasters were downscaled to 30 m using
GEE image pyramids to ensure consistency
across layers. Individual rasters were
stacked to form a single multiband layer
used for prediction modeling. The overall
workflow is shown in Figure 3.

Soil Organic Carbon Prediction

Predictive modelling was conducted in
RStudio using AutoML with automated
hyperparameter optimization; no manual
tuning was performed. The response
variable was SOC for the local dataset and
log-transformed SOC for the global dataset.
Log transformation was applied only to the

global SOC dataset to address skewness and
heteroscedasticity associated with its wider
value range, whereas the local dataset
exhibited a narrower distribution and did not
require transformation. Data were split into
training (60%), validation (20%), and testing
(20%). AutoML (300-second runtime)
automatically evaluated multiple algorithms
(GBM, DRF/XRT, GLM, Deep Learning, and
Stacked Ensemble) with cross-validation
(Table 5). Upon completion, the leaderboard
was examined to identify the top-performing
models based on evaluation metrics such as
Root Mean Squared Error (RMSE) and R*.

Permutation Variable Importance

Variable importance was assessed
using permutation importance through the
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H,O interface. The Fisher-Yates shuffle was
applied to each predictor, and loss in model
accuracy (difference in RMSE or R? from
baseline) quantified its importance. This

Table 5. Models used in AutoML

method provided insights into the relative
influence of climate, soil, vegetation, and
relief factors on SOC prediction.

Model Description

DRF This includes both the Distributed Random Forest (DRF) and
Extremely Randomized Trees (XRT) models.

GLM Generalized Linear Model with regularization

GBM Gradient Boosting Machine

Deep Learning

Stacked Ensemble

Fully-connected multi-layer artificial neural network.

Stacked Ensembles, includes an ensemble of all the base models

and ensembles using subsets of the base models.

Results and Discussion
Prediction Model Performance

Local Scale model using ground truth
data

The Gradient Boosting Machine (GBM)
stood out as the best model among the
algorithms tested for predicting SOC
content at the local scale. It achieved a R?
value of 0.49 on the training data and 0.35
on the testing data and RMSE values of
0.05 and 0.06 on the training and testing
data, respectively, indicating its ability to
capture the relationship between
environmental factors and SOC. algorithms
tested for predicting SOC content at the
local scale. It achieved a R? value of 0.49
on the training data and 0.35 on the testing
data and RMSE values of 0.05 and 0.06
on the training and testing data,
respectively, indicating its ability to capture
the relationship between environmental

factors and SOC. The observed versus
predicted plots for both training and testing
data revealed a strong linear trend between
observed and predicted SOC values,
indicating that the model captured the
dominant relationships between SOC and the
selected environmental covariates (Figure 4).

Global Scale model using WoSIS data

For the global-scale model using WoSIS
data, the Stacked Ensemble algorithm
emerged as the top-performing model. With
high R? values of 0.87 on the training set
and 0.70 on the testing set, and RMSE
values of 0.29 and 0.33 on the training and
testing data, respectively, the Stacked
Ensemble algorithm exhibited strong
predictive performance in estimating SOC
content. Examination of the observed
versus predicted plots further confirmed
the model’s effectiveness, revealing its
ability to capture the underlying patterns
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Figure 4. a) observed vs. predicted for training data and b) observed vs. predicted
for testing data in the local scale model

and between the
environmental covariates and SOC
content. Observed versus predicted plots
showed a strong linear trend between
observed and predicted SOC values,
confirming the ability of the Stacked
Ensemble model to represent underlying

SOC-environment relationships (Figure 5).

relationships

Chasrved Values [Trainng)

Obierred Valwes (Tesbing)

Therefore, it can be concluded that the
Stacked Ensemble model provides a
reliable tool for predicting SOC content at
the global scale, offering valuable insights
into soil dynamics and environmental
processes, capturing better variability than
the local model (Table 6). The digital maps
of SOC (%) produced by local and global
models are shown in (Figure 6).

Prachcied Vikas (Testing)

Figure 5. a) observed V/S predicted for training data and b) observed vs. predicted
for testing data in the global scale model
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Table 6. Performance matrix of local and global models

Local model

Global model

Training Testing Training Testing
R? 0.49 0.35 0.87 0.70
RMSE 0.05 0.06 0.29 0.33
SOC (%) in Anand A

iaasd

Figure 6.a) SOC (%) map for Anand using the local model and b) SOC (%) map for

Anand using the global model

Variable Importance

Variable Importance for the local
scale model

In the variable importance analysis for
the local-scale model, it was found that
bio12 (Annual precipitation, mm) emerged
as the most influential variable, followed
by elevation and bio0O4 (Temperature
seasonality (Standard deviation * 100), ° C).

Among the top 10 important variables,
there were four from Climate, four from Soil
and two from Relief, indicating a diverse
range of factors impacting SOC content
prediction (Figure 7). Notably, in the
Gujarat region, biol2 appeared as the most
influential variable, indicating that
variations in this climatic variable would
exert the most
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Permutation Variable Importance: GEM
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Figure 7. Permutation variable importance for the local scale model
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Figure 8. Permutation variable importance Boxplots for the local scale model
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significant influence on SOC content
prediction (Figure 8). This underscores the
importance of considering regional climatic
conditions, such as mean temperature
during the driest quarter and precipitation,
when assessing SOC dynamics and
developing predictive models at the local
scale.

Variable Importance for the global
scale model

In the variable importance analysis for
the global-scale model, long-term average
annual max EVI (NDVI_MAX) emerged as
the most influential variable, as determined
by Permutation Variable Importance.
Among the top 10 important variables,
three were Soil properties, three were
Climatic variables, three were Vegetation

parameters, and one was a Relief
parameter (Figure 9). This diversity in
influential variables underscores the
complex interplay of environmental factors
influencing SOC content prediction at a
global scale. Additionally, analysis of
boxplots revealed that Vegetation and
Climatic variables exerted the most
prominent effects on the prediction of SOC
content, further highlighting their
significance in driving SOC dynamics on a
broader spatial scale (Figure 10). These
findings underscore the importance of
considering multiple environmental
variables, particularly those related to
vegetation and climate, when assessing
SOC dynamics and developing predictive
models at the global scale.

Permutation Variable Importance: Stacked Ensemble
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Figure 9. Permutation variable importance for the global scale model
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Permutation Variable Importance: Stacked Ensemble
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Figure 10. Permutation variable importance boxplot for global scale model

Conclusion

This study demonstrates that
Automatic Machine Learning can effectively
integrate multiscale remote sensing,
climatic, soil, and terrain data to generate
high-resolution maps of SOC. The Gradient
Boosting Machine performed best at the
local scale, while the Stacked Ensemble
model showed superior performance at the
global scale, highlighting the importance
of scale-aware model selection. Variable-
importance analysis consistently identified
annual precipitation and long-term
maximum EVI as dominant predictors of
SOC, emphasizing the combined role of
climate and vegetation dynamics in
regulating SOC variability. From a practical
perspective, the generated SOC maps can
support site-specific soil and nutrient
management, identification of low-carbon
zones requiring restorative practices, and
land-use planning under climate
variability. For policymakers, these spatial

products can aid in carbon accounting,
prioritization of soil conservation
interventions, and monitoring of soil health
indicators at regional scales, particularly
in data-scarce environments. Several
limitations should be acknowledged.
Climatic variables were downscaled from
coarse-resolution datasets and therefore
represent regional climatic gradients rather
than true microclimatic variability. In
addition, differences in sampling density
and SOC value distributions between local
and global datasets influenced model
performance and comparability. While
ensemble models demonstrated strong
predictive skill, their complexity also limits
direct physical interpretability. Future
research should focus on incorporating
higher-resolution hyperspectral imagery,
proximal sensing data, and deep learning
architectures to better capture soil-
vegetation—climate interactions at finer
scales. Expanding the framework to
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include temporal dynamics, uncertainty
quantification, and independent regional
validations would further enhance the
robustness and applicability of SOC
mapping for sustainable land management
and climate-resilient agriculture.
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