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ABSTRACT

At the present juncture, Indian agriculture faces a bidirectional challenge
- meeting the rising food demand of a growing population while ensuring
economic stability and environmental sustainability. Prolonged dependence
on intensive and conventional farming practices has led to the degradation
of soil quality, depletion of soil organic matter, and soil resilience. The
yield-centric mindset of farmers, often driven by short-term economic needs,
has gradually undermined the long-term productivity and ecological balance
of agricultural lands. If continued unchecked, this trajectory risks future
food insecurity, increased production costs, and systemic economic
vulnerability. In this context, the adoption of alternative farming strategies
becomes crucial. Regenerative agriculture represents a transformative
approach aimed at restoring soil health, enhancing biodiversity, capturing
carbon, improving water use efficiency, and strengthening ecosystem
services. The emerging integration of Artificial Intelligence (AI), Internet of
Things (IoT), remote sensing technologies, and decision-support systems
(DSS) has significantly enhanced the feasibility and scalability of
regenerative practices. These technologies enable precision soil health
monitoring, real-time assessment of pest and disease outbreaks, optimized
irrigation and fertilization, and predictive weather and risk assessment.
Remote sensing combined with AI-driven analytics, facilitate continuous
and spatially explicit monitoring of soil conditions and crop performance.
IoT-based field sensors generate localized, real-time datasets that support
adaptive and site-specific management. Such gaps are prominent in regions
like West Bengal, where high cropping intensity and diverse agroecological
conditions demand region-specific solutions. Strengthening digital
infrastructure, capacity building, and inclusive policy support will be
essential to realize full-scale adoption. Overall, the synergy of regenerative
agriculture with AI, remote sensing, and digital tools holds significant
promise for improving farm productivity, economic resilience, and
environmental sustainability, while contributing meaningfully to national
food security and climate change mitigation goals.
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Introduction

Increasing population growth has
drawn greater attention regarding limited
availability of soil and other natural
resources which further raises a serious
concern about soil security and the earth’s
carrying capacity (Hartemink and
McBratney, 2008). In India, where
agriculture contributes 18.33% to the
national GDP and employs almost half of
the population, the sector have a higher
chance to face challenges to meet the food
demand for the growing population in near
future due to intensive farming practices,
soil degradation and changing climate.
Therefore, it is crucial to understand and
manage soil health to promote sustainable
agriculture and innovative farming
practices (Biswas et al., 2025; Choudhury
et al., 2024; Bhattacharyya et al., 2015).
Regenerative farming emphasizes restoring
soil health, enhancing biodiversity,
improving water retention, and reducing
dependence on chemical inputs. Artificial
Intelligence (AI), remote sensing, and
digital technologies together enable data-
driven decision-making that supports
these ecological goals. AI, remote sensing,
and digital tools play a transformative role
in supporting regenerative farming
enabling more sustainable practices,
higher yields, and improved soil health
through data-driven strategies and
precision technologies (Olawale et al.,
2025). By utilizing satellite imagery, sensor
mounted aerial platforms, and spatial
analytics, AI algorithms can identify crop
types, monitor crop and soil, health, assess
growth stages, detect stress caused by
pests, diseases, or water deficiency, and
predict yields with high accuracy
empowering farmers to make informed

decisions that enhance sustainability and
output (Kulwant and Patel, 2024). This
integration enhances real-time monitoring,
supports sustainable resource management,
and helps farmers optimize inputs such as
water, fertilizers, and pesticides while
minimizing environmental impacts (Ramirez,
2025; Arogundade and Njoku, 2024). In a
climate with increasingly unpredictable
weather, it also supports resilience by
forecasting extreme events and helping
farmers adapt their strategies. Overall,
integrating AI into agricultural systems not
only streamlines farm operations but also
supports global efforts toward food security
and environmental conservation (Ali et al.,
2025).

Precision Farming and Digital Agriculture-

A Component of Regenerative Farming

Precision Farming and Digital
Agriculture are closely related concepts in
modern regenerative farming strategies
that leverage technology for improved
productivity and sustainability, but they
differ quietly in scope and complexity
(O’Donoghue et al., 2024; McLennon et al.,
2021; Bronson, 2020). Precision
agriculture, commonly called as precision
farming, is a management strategy focused
on resource optimization with the help of
technologies like GPS, sensors, remote
sensing (satellite/aerial imagery), and
variable-rate application tools to deliver
inputs (water, fertilizers, pesticides)
precisely where and when needed on a site-
specific basis (Mani et al., 2021; Mohamed
et al., 2021). It aims to increase resource use
efficiency, yield, and quality while reducing
environmental impact by minimizing waste
and unintended application. Digital
Agriculture often called as Smart farming
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is a more integrated digital approach that
applies information and communication
technologies (ICT), artificial intelligence
(AI), remote sensing, machine learning
(ML), robotics, Internet of Things (IoT), and
big data analytics across the entire
agricultural value chain (Gebresenbet et

al., 2023; AlZubi and Galyna, 2023). It
incorporates precision farming techniques
but extends to autonomous machinery,
farm management software, supply chain
tracking (blockchain), climate control,
market forecasting, and environmental
monitoring. Smart agriculture aims to
optimize not only production inputs but
also logistics, sustainability credentials,
and decision-making processes at farm and
system levels.

Internet of Things (IoT) in Smart

Agriculture

The Internet of Things (IoT) has
emerged as a transformative technology in
smart agriculture, enabling real-time
monitoring, automation, and decision-
making to enhance productivity and
sustainability (Suma, 2021; Sekaran et al.,
2020). IoT systems connect a network of

sensors, devices, and machinery through
the internet, allowing wireless data
exchange and deploy sensors in fields to
measure crucial parameters such as soil
moisture, temperature, humidity, nutrient
levels, and light intensity which provide
continuous insights to farmers regarding
crop, soil and weather conditions (Suma,
2021; Mat et al., 2018) (Figure1). Thus, IOT
can be treated as an integral part of
precision farming through which irrigation,
fertilization, and pest control can be
optimized based on real-time field variability
(Sharma and Shivandu, 2024). IoT-enabled
systems also include smart irrigation that
automatically adjusts water supply based
on soil and weather data, thereby reducing
water wastage and improving efficiency (Lin
et al., 2020). Drones and unmanned
vehicles, integrated with IoT networks, help
in crop surveillance, pesticide spraying, and
mapping of large farmlands (Vashishth et

al., 2024; Gao et al., 2020). The integration
of IoT with AI and cloud computing enables
predictive analytics, early disease detection,
and yield forecasting, empowering farmers
to make data-driven decisions (Delfani et

al., 2024).

Figure 1. Application of IOT in digital agriculture
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Artificial Intelligence (AI) and Machine

Learning (ML)

Artificial Intelligence (AI) refers to an
advanced computer system that can
perform tasks typically alike human
intelligence, such as recognizing images,
understanding speech, making decisions,
and translating languages (Russel and
Norvig, 2016). It includes areas like
computer vision, data mining, deep
learning, image processing, and neural
networks (Kale and Patil, 2018). In other
hand Machine Learning (ML) is the process
through which AI can perform any task
based on algorithms that enable
computers to learn from provided dataset
and can improve their performance
without being explicitly programmed for
each specific task (Tyagi and Chahal, 2020)

Figure 2. AI and Machine learning based

approaches

(Figure 2). Instead of following fixed

instructions, machine learning algorithms
analyze patterns in data and adapt to make

predictions or decisions based on new
input (Figure 3). Machine learning makes

Figure 3. Machine learning and statistical modeling-based approaches to predict
several soil and crop parameters (Source : Modified from Choudhury et al., 2025
with permission from the publisher © Springer Nature, 2025.)
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able any AI system to learn and improve
from experience, making AI systems more
flexible and powerful (Rahmani et al.,
2021). AI is becoming an essential part of
this technological shift. Simply put, AI is a
system that can learn and adapt to carry
out tasks in real-time, using cognitive
abilities similar to the human brain, and
importantly, it can operate without needing
constant oversight (Maher, 2018).

Applications of AI and other Digital

Platforms in Agriculture - Decision

Support System (DSS)

A Decision Support System (DSS) is an
intelligent, computer-based tool that
assists farmers, agronomists, and
policymakers in making informed and
data-driven decisions for effective farm
management (Zhai et al., 2020; Rinaldi and
He, 2014). In smart agriculture, DSS
integrates data from multiple sources such
as IoT sensors, remote sensing, weather
stations, GIS, and crop models to analyze
complex agricultural scenarios and provide
actionable recommendations (Kukar et al.,
2019) (Figure 4). The system combines data
processing, analytical modeling, and

visualization techniques to help optimize
irrigation scheduling, fertilizer application,
nutrient management, pest management,
and crop selection based on site-specific
conditions (Gallardo et al., 2020; Mir et al.,
2015). Modern DSS platforms leverage ML
and AI algorithms to predict crop yield,
assess risks, and simulate various
management strategies under changing
climatic and market conditions (Upadhyay
et al., 2025; Suneetha, 2023). Moreover,
cloud-based DSS allows real-time access
and collaboration, enabling farmers and
extension workers to share insights and
make coordinated decisions. AI may help
Indian farmers to choose the right crop and
minimise the risks. As a result, AI is
steadily appearing as part of the industry’s
technological evolution. AI can identify a
disease with 98% accuracy (Giri et al.,
2020). AI-powered solutions can enhance
crop quality and significantly shorten the
time-to-market, ensuring greater efficiency
and profitability in agricultural production
(Soffar, 2019). A brief list of several AI based
digital platforms used in the field of
Agriculture and Soil science are given in
Table 1.

Remote Sensing, Proximal Sensing,

Aerial Platforms and Satellite Imagery

Based Monitoring

Recent advances in sensor design,
including higher signal-to-noise ratios and
miniaturization, have enabled spectral
sensing to operate from satellites, aircraft,
unmanned aerial vehicles, and even
ground-based platforms. These systems
provide near-laboratory quality reflectance
data in real-world conditions. Combined
with modern multivariate statistical
techniques, it can predict the complex

Figure 4. Digital platforms employed in

smart farming
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Table 1. Application of several digital tools in smart farming practices

AI/Digital Type Application Reference

platforms

Google Earth Cloud-based Crop classification, Zhao et al. (2021); Khan
Engine (GEE) GIS platform vegetation dynamics, and Mohiuddin (2018)

drought monitoring

QGIS Open-source Soil mapping, land use
GIS software planning, crop health Choudhury et al. (2025)

mapping

ArcGIS Commercials Spatial modeling and Choudhury et al. (2025);
GIS software decision-making Bright et al. (2009)

SAGA-GIS Department of
Physical Geography, Germany Passy and Théry (2018)

University of
Gottingen,

ENVI Harris Geospatial Broomfield, Colorado, Choudhury et al. (2025);
Solutions  Bright et al. (2009)

AutoCAD Autodesk San Rafael, United Tickoo (2017)
Map 3D States, California,

Map Maker Map Maker Limited Argyll, UK Scotland, Winkelaar and Crosson
Pro  (2024)

(MapMaker)

GeoMedia Intergraph Madison, United Takken (2012)
(Hexagon) States, Alabama

aWhere Predictive analytics Weather forecasting,
platform crop sustainability Giri et al. (2020)

analysis, pest and
 disease detection

FarmShots Predictive analytics Monitoring crop health,
platform pest and disease Giri et al. (2020)

detection

Plantix Predictive analytics Crop disease detection, Giri et al. (2020)
and monitoring tool sustainable cultivation,

farm advisory

CropIn AI + IoT agribusiness Crop monitoring, yield
platform estimation, credit risk Giri et al. (2020)

mitigation, farm

traceability
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mixtures of soil constituents, detect the
particular signs and symptoms caused by
any insect-pest or disease, monitor soil and
crop health, land cover etc. (Dasgupta et

al., 2024; Mitran et al., 2024; Ghany et al.,
2020) and thus can efficiently be utilized
as a powerful non-destructive tool
agriculture, environmental monitoring,
spectroscopic studies and land management.
The significant advancement, however, has
been realized through unmanned aerial
vehicles (UAVs) outfitted with sophisticated
multispectral and hyperspectral sensors.
These platforms effectively bridge the
critical divide between high-resolution
ground measurements and expansive
satellite observations. Sensors mounted on
UAVs can capture imagery at spatial
resolutions frequently less than 5 cm, thus
unveiling soil variability patterns that
remain undetectable by satellite sensors
(Figure 5). Spectral indices derived from
remote sensing are widely used for
assessing vegetation status, soil fertility,
and land degradation. The Normalized
Difference Vegetation Index (NDVI) is the
most common, exploiting red and near-
infrared reflectance to indicate vegetation
density, moisture stress, and soil
degradation (Zhang et al., 2005; Tucker,
1979) (Figure 6). Additional indices such
as Green Normalized Difference Vegetation
Index (GNDVI), Ratio Vegetation Index
(RVI), Soil Adjusted Vegetation Index
(SAVI), and others have been developed to
compensate for these limitations and
provide more reliable vegetation
assessments in varying conditions (Sripada
et al., 2006; Gitelson et al., 1996a, b) (Figure7).
Variants such as the Enhanced Vegetation
Index (EVI) improve sensitivity in dense
canopies, while the SAVI and its

refinement, the Modified SAVI (MSAVI),
reduce soil background influence in
sparsely vegetated areas (Novando et al.,
2021; Vijith et al., 2020; Huete, 1988). For
soil salinity mapping, indices like the
Salinity Index (SI), Normalized Difference
Salinity Index (NDSI), and Brightness Index
(BI) are applied, often outperforming
conventional field surveys in delineating
salt-affected zones (Zhang et al., 2022;
Azabdaftari and Sunar, 2016; Wang et al.,
2013) (Figure 8). Normalized Difference
Water Index (NDWI), Augmented
Normalized Difference Water Index (ANDWI)
and Land Surface Water Index (LSWI)
provide insights into soil and crop water
status, complementing vegetation-based
indicators (Jackson et al., 2024; Dasgupta
et al., 2023; Christian et al., 2022). In
addition, indices such as the Normalized
Burn Ratio (NBR), NBR+ are useful for
assessing vegetation disturbance and
recovery on degraded lands (Alcaras et al.,
2022; Escuin et al., 2008). More advanced
indices, including the Chlorophyll Index (CI)
and Photochemical Reflectance Index (PRI),
provide information on nutrient status and
photosynthetic efficiency (Hunt et al., 2011;
Garbulsky et al., 2011).

Case Studies-with a Special view on West

Bengal Scenario

A notable case study exemplifying the
integration of remote sensing with other
technologies in agriculture is the Satellite-
Based Rice Monitoring (SRM) system (Mani
et al., 2021). This system combines RS, crop
modeling, web geographic information
system (GIS), smartphone technology,
unmanned aerial vehicles (UAVs), and cloud
computing services such as Amazon Web
Services (AWS). The SRM system provides
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near-real-time, accurate information on
rice growth, yield forecasts, and stress
conditions caused by environmental or
biotic factors. This integrated approach
enables better decision-making and has
been applied successfully in several
countries, with monitored areas expanding
from 1.6 million hectares in 2012 to over
24.5 million hectares by 2016 at an
accuracy level exceeding 85% (Sylvester,
2018). In Kalyani, India an ASD Field Spec
4 spectroradiometric study was also carried
out in a rice based cropping system to
predict the spatial variability in soil organic
carbon and nitrogen (available and total)
content through PLSR and SVML modelling
where it was observed that SVMR model is
the best suited model outperforming PLSR
for all the soil properties with R2 values of
0.98, 0.92 and 0.97 respectively for SOC,
total soil N and available soil N (Ghosh et

Figure 5. Crop and soil monitoring through satellite and aerial platform based imagery

al., 2025). Numerous studies also have
been done through Portable X-ray
Fluorescence spectrometry (PXRFS) for the
prediction of various quality attributes of
soil (Dasgupta et al., 2022; Weindorf and
Chakravarty, 2016; Silva et al., 2021).
PXRF-spectroscopy has successfully been
implemented to predict the available P,
exchangeable Ca2+ content (Pelegrino et al.,
2022) and available micronutrient content
(Andrade et al., 2020) in some tropical soils
of Brazil, percentage base saturation
(Rawal et al., 2019), SOM content (Silva et

al., 2017), textural fractions (Silva et al.,
2020); salinity extent (Young et al., 2015),
nature of the soil parent material (Mancini
et al., 2019) etc. In West Bengal, regional
soil micronutrient mapping approach has
also been taken by several scientific
communities especially based on machine
learning and prediction modeling. ML-
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predicted spatial variability of several
micronutrients like Zn, Cu, Fe etc. was
assesses and mapped along with their
critical values in soil by collecting 1778 soil
samples from Indo-Gantetic plains of West
Bengal (Dasgupta et al., 2023) (Figure 9).
Dasgupta et al. (2022) studied on 561 soil
samples under rice based cropping system
collected from six different agroclimatic
zones of West Bengal, India where PXRFS
combining with auxiliary variables (e.g.,
pH, EC, SOC, nature of parent material
etc.)  have been implemented to predict the
available nutrient status (e.g., Ca2+, Mg2+,
K+, Zn2+, Cu2+, Mn2+ etc.), exchangeable
base percentage and sulphur availability
index in soil with the help of four machine
learning models viz. RF, PLSR, SVMR,
Stepwise multiple regression and a
combination average model with a good
prediction accuracy.   Available Mn, B, S,
SOC and Sulphur Availability Index in soil
were successfully predicted with combine
implementation of PXRF spectrometric
data, auxiliary soil variables (e.g., Parent
material and Agro-climatic characteristics)
and microscopic soil images captured
through an USB-microscope based on
1133 soil samples collected from five
different stated of India and modelled
through RF algorithm, the result showed
that the combined data source exhibited
comparatively a higher accuracy for SOC
(R2 = 0.87) and available B (R2 = 0.82) than
the individual approaches (Dasgupta et al.,
2024) (Figure 10). Nitrogen content in soil
was estimated using Hyperion data and the
MPLSR algorithm in Udupi, India (Gopal
et al., 2015).  A digital Soil Quality Index
Map was prepared by De et al. (2022) based
on 450 soil samples from the depth of 0-

20 cm from different places of Jalpaiguri,

Alipurduar and Cooch Behar district of

West Bengal, India which provides a
valuable insight in monitoring spatial

distribution of soil quality with respect to

19 soil quality indicators (Figure 11).
Another DSM programme was initiated by

a group of scientists from National Remote

Sensing Centre, Hyderabad based on 2012
samples from different regions of

Karnataka, India to evaluate and map the

nature of soil texture digitally (Mitran et

al., 2024). Bhaibai (2023) had carried out

a detailed study on the distribution and

mapping of the potassium fractions
presented in the soil system based on a

total of 160 soil samples from two different

districts of Teesta Terai alluvial region of
West Bengal. Sen (2019) prepared a DTPA

extractable Fe map digitally based on 35

composite sample from the district of
Cooch Behar, West Bengal, India and Gogoi

et al. (2017) has developed a digital

distribution map of Zn fractions present
in soil based on 48 composite samples from

the similar study area (Figure 12). A soil

organic carbon map was developed digitally
through machine learning by Padarian et

al. (2019). A digital Soil Organic Carbon

along with Soil Inorganic Carbon stock map
of India have been developed by Sreenivas

et al. (2016) at a spatial resolution of 250

m. An approach of mapping the salinity
classes at Sundarban region, West Bengal

was undertaken by Sahana et al. (2020).

Geospatial data collected via Google Earth
Engine was assessed to formulate a soil

erosion map of Kharagpur region, Paschim

Medinipur, West Bengal, India (Choudhury
et al., 2025) (Figure 13).
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Figure 6. NDVI map of some regions at Indo-gangetic plane, West Bengal

(Source : Reprinted from Dasgupta et al., 2023 under terms of the CC-BY license.)

Figure 7 and Figure 8. SAVI map of Jaldhaka river basin, West Bengal and NDSI

map (left side) (Source: Reprinted from Raha et al., 2023) and NDSI map Purulia

region, West Bengal, India (Prepared with the help of esri ArcMap 10.6) (Right side)

(Source: Reprinted from Choudhury et al., 2025 with permission from the publisher

© Springer Nature, 2025).



SATSA Mukhapatra - Annual Technical Issue 30 : 2026

369

Figure 9. Predicted spatial distribution map of Available Zinc and Copper and

Manganese in the soils from some regions of Indo-Gangetic plane, West  Bengal

(Source: Reprinted from  Dasgupta et al., 2023 under terms of the CC-BY license.)

Figure 10. Predicted (RF algorithm based) vs. Observed plots for the available B,

SOC, available Mn, SAI (Sulphur Availability Index) extracted from the combined

PXRF spectroscopy+USB microscopic approach from soils (Source: Reprinted from

Dasgupta et al., 2024 with permission from the publisher © Elsevier, 2024)
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Figure 11. Soil Quality Index (a) and Land Use Land Cover (LULC) map of Cooch

Behar region, west Bengal (Source: Reprinted from De et al., 2022 under terms of

the CC-BY license.)



SATSA Mukhapatra - Annual Technical Issue 30 : 2026

371

Figure 12. Spatial distribution map of DTPA extractable Zinc (kg ha-1) at 0-20 cm

depth in the soils from the study area (Terai region of West Bengal, India). (Source:

Reprinted from Gogoi et al., 2017 under terms of the CC-BY license)

Figure13. Soil erosion map of Kharagpur region, Paschim Medinipur, West Bengal,

India (Prepared with the help of Google Earth Engine) (Source: Reprinted from

Choudhury et al., 2025 with permission from the publisher © Springer Nature, 2025)
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Challenges

While AI greatly advances agriculture
by improving its efficiency, yield, and
sustainability, simultaneously concerns
about its impact on agricultural
employment. Agriculture supports the
livelihoods of more than 1.5 billion people
worldwide. However, as artificial
intelligence and robotics take over
repetitive field tasks, there is growing
concern that these technological
advancements could displace many
manual laborers, affecting rural livelihoods
and traditional farming communities
because smart robots and drones can
navigate fields, handle crops, and perform
complex operations, reducing labor
demand. However, AI also creates new job
opportunities in data analysis, drone
operation, precision farming, and AI system
management, which demand higher
technical skills. Access to advanced
technologies like drones, UAVs, sensors
etc. remains costly and thus highlighting
the need for increased investment and
infrastructure support to make AI tools
accessible to small farmers.

Future Recommendation and Scope of

Adaptation Particularly for West Bengal

Perspective

Future efforts focus on enhancing AI
algorithms with deep learning, improving
sensor fusion (satellite, drone, ground-
based), expanding user-friendly decision
support systems, integrating IoT networks,
reducing technology costs, and promoting
farmer training to boost adoption. In West
Bengal, most farming communities (over
82%) belong to the marginal or smallholder
category and are economically weaker

compared to those in the north-western
and southern states of India.
Consequently, the adoption of next-
generation (Agriculture 4.0) practices,
innovative ideas, and resource optimization
strategies will not be an easy task for such
farmers, as they cannot implement these
technologies independently. Moreover,
farmers especially those engaged in kharif
rice cultivation face persistent challenges
related to both yield and income due to
inadequate guidance, weather
uncertainties, lack of pest and disease
forecasting, misidentification of diseases
and nutrient deficiencies, and limited
marketing facilities. In addition, the
absence of reliable soil fertility forecasting
systems means that most farmers remain
unaware of the nutrient status of their
fields, leading to imbalanced fertilizer
application, chemical degradation of soil
health, and increased input costs per unit
area. Therefore, under the prevailing
conditions in West Bengal, there is an
urgent need to develop efficient and precise
systems for real-time monitoring and
forecasting of weather, soil, and crop
health. These systems should be made
freely and easily accessible to all farmers.
Government initiatives and collaborative
efforts among research institutions,
extension agencies, and private sectors will
be crucial to achieving this goal.

A) Recommendations for Farmers

I. In season crop health monitoring, yield
prediction, pest/disease early warning,
irrigation scheduling, and support for
crop insurance and market decisions.

II. Near real time crop health and stress
monitoring (NDVI/EVI, SAR change
detection).
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III. Yield forecasting at block level with
actionable lead time (4–8 weeks before
harvest).

IV. Pest/disease detection and hotspot
alerts using edge/phone imagery and
UAVs.

V. Soil moisture estimation and precision
irrigation scheduling advisories.

VI. Integration with extension services,
KVKs, and state agriculture portals.

VII. Establish ground truth networks
(KVKs, selected farmer plots) and
mobile data collection app.

VIII. Weekly NDVI anomaly maps for rice
belts distributed to district officers.

IX. Development of pilot pest detection
phone app.

X. Training modules for extension officers
on RS dashboards, interpretation, and
farmer communication.  Hands on
workshops for KVKs on mobile data
collection and basic model validation.

B) Recommendations for Researchers/

Institutions

I. Development of AI enabled
applications where a number of crop
android region specific Targeted Yield
equations should be programmed.
Where by putting the Soil test values,
variety name, targeted yield values,
farmers can easily determine the
optimum fertilizer dose. 

II. Smart phone coupled sensors need to
be developed which can spectrally
determine or indicate the N:K ratio in
plant body and detect the chance of
Lodging or been infested by BPH or
any pest - diseases along with suitable
prescription measures.

III. Preparation of region-specific
micronutrient fertility maps and
identification of their localised
deficiencies. So that proper
management strategies would be
adopted within time.

IV. Special focus should be given on
potassium management. Potassium
fractions need to be mapped for each
agro-climatic zone because at present
time the potassium budget (PNBI

K
-

Partial Nutrient Budget Intensity of
Potassium) in soils throughout the
India is negative due to K-mining and
non-labile stocks get exploited day by
day. 

V. Carbon management strictly need to
be brought under spectral monitoring
and assessment. Satellite data as well
as hyperspectral proximal sensing
dada should be processed to
determine the emission of carbon from
agricultural fields and their lability on
long term basis which helps to identify
the cropping systems and farming
practices which can sequester carbon
more efficiently.

VI. Focus also need to be put on spatial
delineation of heavy metals (i.e.
arsenic, cadmium etc.) and their toxic
fractions in soil-water-plant system
from their spectral signature and
mapped properly for public awareness.

Conclusion

To ensure long-term sustainability of
natural resources while maintaining the
economic viability of agricultural
production, precision farming must be
integrated with conventional agricultural
practices in a multidimensional and
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complementary manner. In the coming
decades, as global population continues to
rise, agriculture will face more challenges
pertaining to productivity, environmental
resilience, and resource scarcity. Therefore,
future agriculture must be more strategic,
optimized, and resource-efficient, while
generating significantly lower
environmental footprints. The goal is to
increase or sustain crop production while
reducing indiscriminate input use,
minimizing soil degradation, and
conserving water and other natural
resources. This can be achieved through
sensor-based monitoring of soil health and
fertility, real-time detection of insect-pest
infestation and damage boundaries,
localized weather forecasting, and site-
specific nutrient requirement assessment.
In addition, targeted and smart delivery of
irrigation water and nutrients, instead of
uniform blanket application, can
significantly reduce wastage and pollution.
When such sensing and monitoring
systems are integrated with digital
platforms, remote sensing, and AI-driven
decision support tools, and made
accessible to farmers, cooperatives, and
agricultural institutions at affordable
scales, the agricultural ecosystem can
transition into a truly regenerative,
climate-resilient, and smart system. Such
a system balances productivity with
ecological responsibility, ensuring that
agriculture remains both profitable for
farmers and sustainable for the planet.
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