

The Microbial Interface in Agriculture : Strategic Pathways for Mitigation of Biotic and Abiotic Stresses

P. Adhikary, S. Samanta, S. Karmakar, S. Jash and R. Das*

(Received : December 30, 2025; Revised : January 15, 2026; Accepted : January 31, 2026)

ABSTRACT

The persistent global challenges in food production are caused by the combined impacts of rapid climate change and widespread soil deterioration. There is an urgent need to switch of sustainable, resource-efficient, and biologically based farming practices since traditional, input-intensive agriculture systems—which rely heavily on chemical pesticides and fertilizers—have exposed serious environmental vulnerability. The Biological Interface, which represents the complex web of interactions between plants, soil ecosystems, and the surrounding microbial communities, is identified in this review as the most important focus point for transformation. According to market predictions, the agricultural based biological industry would rise from USD 18.44 billion in 2025 to USD 34.99 billion by 2030, showing a robust CAGR of 13.7%. This change is becoming increasingly important due to strong economic incentives. By reducing the accumulation of stress-related ethylene, a hormone that can impede plant growth in unfavourable circumstances, key molecular pathways, in particular the function of ACC deaminase produced by specific PGPR strains, offer a targeted solution for mitigating major abiotic stresses, such as drought and salinity. Precision biotechnology, bolstered by integrated multi-omics studies and contemporary synthetic biological methods like CRISPR/Cas9 for the strategic development of robust and functionally optimised SynComs, is essential to achieving useful and scalable applications. Furthermore, novel formulation and delivery methods are needed to improve microbial survival and long-term stability in field circumstances. One such method is biochar-assisted microencapsulation of PGPR, which increases microbial endurance and helps mitigate adverse soil restrictions. The PM-PRANAM project in India, which deliberately reallocates savings from chemical fertiliser subsidies to promote and incentivise bio-based agricultural inputs, is an example of how policy assistance is accelerating the shift towards biological alternatives. In order to ensure sustained food availability, better nutrition, and agricultural resilience in the twenty-first century, it is imperative to adopt an Integrated Biological Interface Management (IBIM) framework.

Keywords : Biological interface, Abiotic stress, Biotic stress mitigation, food security, Sustainable agriculture.

Department of Plant Pathology, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia -741252

* Corresponding Author Email: rajudas05@gmail.com

Introduction

Two interrelated and pressing issues facing global agriculture are meeting the world's fast growing food demand and slowing the rate of environmental degradation. Global food emergency reports, which shows that millions of people are experiencing acute food insecurity due to economic instability, geopolitical conflicts, and extreme weather occurrences, frequently highlight the gravity of this situation. The first part of this issue is related to climate change, which causes heat waves, protracted droughts, irregular rainfall, and an increase in extreme weather events, all of which affect agro-ecological stability. By decreasing water-use efficiency and raising stress-driven yield losses globally, these changes directly reduce crop productivity.

The long-term effects of agriculture during the Green Revolution, which favoured high-yielding crop types backed by heavy chemical fertiliser and pesticide use, are the source of the second aspect of the issue. Despite being revolutionary at first, this strategy has resulted in widespread soil exhaustion, which is characterised by decreased biological activity, deteriorating soil structure, and falling organic carbon. Furthermore, the large-scale production and use of industrial nitrogen fertilisers greatly increases greenhouse gas emissions, which exacerbates the hazards associated with climate change. These traditional high-input agricultural systems have now hit their ecological threshold, as noted in previous evaluations, and small changes are no longer adequate.

In order to protect future food availability and restore soil health, switching to resource-efficient, biologically based, and environmentally restorative farming systems is no longer optional, according to scientific data and expert consensus. Because essential agricultural inputs, particularly synthetic fertilisers, are still closely linked to fossil fuels and unstable international trade networks, continued reliance on chemical-intensive farming also presents geopolitical risks. For many nations, this turns dependency on agricultural inputs from a supply-chain issue into a threat to national security.

Therefore, both strategic autonomy and environmental sustainability can be addressed by moving towards decentralised, biology-driven production systems. Biologically driven agricultural models provide a route to increased food sovereignty, enhanced climate resilience, and long-term sustainability in global crop production by bolstering local nutrient cycling, enhancing soil resilience, and decreasing reliance on external inputs.

Defining the Biological Interface and the Holobiont Paradigm

The Biological Interface, the dynamic zone that connects the phyllosphere (above-ground plant surfaces) and rhizosphere (root-influenced soil), is the subject of this review. It is here that microorganisms and plants continue to communicate chemically and molecularly. The holobiont theory, which shows plants and their stable microbiome as a single ecological and evolutionary unit and believes that overall fitness and stress resilience result from system-level synergy rather than just plant genetics, is

consistent with this connection. The strategic application of Plant Growth-Promoting Rhizobacteria (PGPR) as essential components of plant nutrient-uptake and stress-adaptation networks is supported by this approach (Vessey, 2022). As a result, the most effective intervention site for enhancing agricultural resilience and sustainability is the Biological Interface (Vessey, 2022). Monitoring and financial accountability are managed via the Integrated Fertilizer Management System (iFMS), making precise usage tracking and verification a policy prerequisite.

The use of Integrated Biological Interface Management (IBIM)-aligned biological inputs must be backed by trustworthy digital monitoring systems that confirm transparency, show farmer ROI (Return on Investment), and justify both economic and environmental benefits because public investment is dependent on quantifiable results. Building farmer confidence and demonstrating the practical benefits of biological transition techniques depend on this data-backed accountability loop.

Compelling Economic Drivers: Quantifying Market Trajectory

Strong market incentives and sustainability priorities are driving a significant shift in the global agriculture sector. The agricultural biological market, which includes biopesticides, biofertilizers, and biostimulants, is expected to increase at a compound annual growth rate (CAGR) of 13.7% from USD 18.44 billion in 2025 to USD 34.99 billion by 2030 (Markets and Markets, 2025). Agricultural microbials are developing quickly in this field; at a

compound annual growth rate (CAGR) of 13.80% and the industry is projected to increase from USD 7.5 billion to USD 14.30 billion by 2030 (Mordor Intelligence, 2025). Additionally, market trends show a compositional shift that biostimulants are expected to grow at a quicker CAGR of 15.3% by 2030, whereas biopesticides previously had the largest revenue share (Mordor Intelligence, 2025).

The market is clearly moving towards solutions that increase plant growth and strengthen stress resilience, which is in line with the systemic advantages provided by PGPR. This is seen in the growing demand for biostimulants. Rather than only replacing chemical inputs, investment value is increasingly associated with solutions that guarantee consistent performance under climatic uncertainty. The fact that seed treatment accounted for the greatest portion of the agricultural microbial market in 2024, highlighting the significance of early and efficient microbial colonisation, further supports the need for long-term dependability (Mordor Intelligence, 2025).

Consistent policy support and regulatory stability across major economies also have a significant impact on farmer uptake and market expansion. Reducing reliance on expensive, traditional chemical inputs speeds up adoption through a feedback loop that reinforces itself, making innovation readiness and regulatory certainty important factors in determining market expansion and investment security. A summary of market trajectory information, emphasising the biological sector's rapid growth is given in Table 1.

Table 1. Global Agricultural Biologicals Market Trajectory (2025–2030)

Segment (2025)	Market Size (2030)	Forecast CAGR (2025-2030)	Projected	Key Driver
Agricultural Biologicals (Total)	USD 18.44 Billion	USD 34.99 Billion	13.7%	Regulatory shifts & sustainability demand (Markets and Markets, 2025)
Agricultural Microbials (Subset)	USD 7.5 Billion	USD 14.30 Billion	13.8%	Demand for biofertilizers and PGPR (Mordor Intelligence, 2025)
Biostimulants (Function)	(Implied based on growth)	N/A	15.3% (Fastest Growth)	Focus on proactive stress resilience (Mordor Intelligence, 2025)

Global Policy Alignment: Mandates and Regulatory Challenges

Climate-smart policy frameworks are speeding up the global transition to biologically driven agriculture. The EU Bioeconomy and Farm to Fork initiatives, which aim to decrease nutrient losses and dependence on synthetic fertilisers, are shaping this shift in Europe (European Commission, 2025). India's PM-PRANAM Scheme, which encourages bio-alternatives to lessen economic and environmental reliance on chemical fertiliser subsidies, is a comparable policy-led concept.

However, the world's biological products are growing in popularity and diversity, which emphasises the critical need for harmonised regulations. Product unpredictability, inconsistent markets, and

new trade barriers are being exacerbated by the lack of globally standardised approval and quality norms. Standardised efficacy testing and QC procedures are a global priority as it jeopardises farmer trust, which is a crucial factor in widespread adoption (European Commission, 2025). Therefore, dependable supply chains and guaranteed product performance are essential to the long-term success of policies, especially those focused on substituting chemical inputs.

Microbial Intervention: Engineering Stress Tolerance in the Rhizosphere

The functional efficacy of microbial interventions is fundamentally rooted in the specific molecular mechanisms by which beneficial microbes modulate plant physiology and ecological dynamics within the rhizosphere. Plant stress management

and microbial interventions play an important role in mitigating both biotic and abiotic stresses by harnessing beneficial microorganisms to enhance plant health and resilience under environmental constraints (Lugtenberg and Kamilova, 2009). Through mechanisms such as antibiosis, competition, mycoparasitism, and the stimulation of systemic resistance in host plants, antagonistic microorganisms including *Trichoderma*, *Pseudomonas*, *Bacillus*, and arbuscular mycorrhizal fungi reduce plant infections (Harman *et al.*, 2004; Pieterse *et al.*, 2014). In addition to suppressing disease, plant growth-promoting rhizobacteria (PGPR) and endophytes enhance nutrient uptake, regulate phytohormone levels, produce ACC deaminase, and strengthen antioxidant defence systems to increase plant tolerance to abiotic stresses like drought, salinity, and nutrient deficiency (Vurukonda *et al.*, 2016; Ngumbi and Kloepper, 2016). Besides enhancing soil structure and water-use efficiency, microbial-mediated stress tolerance promotes sustainable crop production in the face of shifting climatic conditions (Lugtenberg and Kamilova, 2009). A combination of biological control and microbial interventions provide a sustainable and comprehensive approach to managing environmental stressors while lowering reliance on chemical inputs (Pieterse *et al.*, 2014).

High-Fidelity Abiotic Stress Mitigation: The ACC Deaminase Mechanism

Excessive “stress ethylene,” which inhibits root-shoot elongation and restricts plant growth and output, is caused by abiotic stresses such as salinity,

dehydration, and high heat. Through a highly focused biochemical mechanism, PGPR with the ACC deaminase gene (ACCD) reduce this reaction. The direct ethylene precursor, ACC, is quickly accumulated by stressed plants and released into the rhizosphere (Singh *et al.*, 2015). Internal ACC pools are decreased by ACCD-expressing PGPR’s enzymatic cleavage of ACC, which reduces its availability for reabsorption by roots (Singh *et al.*, 2015). As a result, stress-ethylene production is reduced and ethylene is restored to non-toxic levels, enabling plants to regain vital physiological processes and increase their resistance to salinity and drought (Singh *et al.*, 2015).

The *acdS* gene is a quantifiable molecular marker for stress-resilience screening since ACCD is a PLP-dependent enzyme that breaks down ACC into α -ketobutyrate and ammonia (Singh *et al.*, 2015). Studies on halo-tolerant, stress-adaptive PGPR, like *Paenibacillus xylanexedens* and *Enterobacter cloacae*, which exhibit enhanced plant growth and reduced ethylene buildup under salinity stress, verify its dependability. *AcdS* is a reliable, measurable biomarker that connects microbial genotype to expected field outcomes, especially growth recovery under stress, due to its biochemical precision, which acts on a single universal precursor (ACC) (Singh *et al.*, 2015).

Biotic Resilience: Induced Systemic Resistance (ISR) and Direct Biocontrol

The primary plant defence mechanism against biotic stress is the Biological Interface. Induced Systemic Resistance (ISR), a stronger systemic immune state, is triggered by beneficial microorganisms

colonising roots (Van Loon, 2007). When plants identify conserved microbial cues, or MAMPs, such as flagellin and LPS, they initiate ISR (Mei *et al.*, 2022). PGPR-mediated ISR, in contrast to SA-dependent SAR, mainly functions via JA and ET signalling, allowing molecular “priming” that speeds up and fortifies subsequent pathogen defence, reducing disease incidence and confirming PGPR-based protection (Van Loon, 2007).

Additionally, PGPR as direct antagonism, where BCAs compete pathogens for nutrients and space. Iron limitation causes defense-gene expression and nutrient-immunity cross-talk, making iron sequestration via siderophore formation a crucial process that is closely related to immunity (Mei *et al.*, 2022). Microbial antibiotics and lytic enzymes

such 2,4-diacetylphloroglucinol are used to further inhibit pathogens (Keswani *et al.*, 2023).

Direct Growth Promotion, Nutrient and Water Use Efficiency (NUE/WUE)

By improving nutrient usage efficiency (NUE) and altering root system architecture (RSA), PGPR increases crop output beyond stress alleviation. In order to enhance water use efficiency (WUE) during drought, they release IAA, which promotes root elongation and branching, increasing root surface area and bolstering nutrient and water uptake capacity. Additionally, PGPR increases plant biomass and P content in wheat trials by mobilising phosphorus through phosphate-solubilizing bacteria (PSB), which excrete organic acids like gluconic acid to liberate chemically fixed P in alkaline, calcareous soils.

Table 2. Molecular mechanisms of PGPR function.

Target Stress	PGPR Mechanism/Trait	Molecular Target Pathway	Biochemical Outcome	Source Reference
Abiotic (Drought, Salinity)	ACC Deaminase	Cleavage of 1-aminocyclopropane-1-carboxylic acid (ACC)	Reduction of toxic stress ethylene levels; Restoration of root growth	Singh <i>et al.</i> (2015)
Biotic (Pathogens, Fungi)	MAMP Elicitors (LPS, Flagellin, Siderophores)	Induced Systemic Resistance (ISR) via JA and ET signalling; Iron competition	Heightened plant defense readiness; Direct pathogen suppression	Van Loon (2007)
Nutritional (P-Limitation)	Phosphate Solubilizing Bacteria (PSB)	Excretion of organic acids (e.g., gluconic acid)	Release of fixed Phosphorus (P) in acidic/calcareous soils	Abdelrahman (2019)
Abiotic (Water Deficit)	Extracellular Polymeric Substances (EPS), AMF	Increased soil water retention; Regulation of Aquaporins	Enhanced Water Use Efficiency (WUE) and osmolyte accumulation	Van Loon (2007)

Translational Biotechnology : From Empirical Bioprospecting to Rational Design

The transition of microbial products from controlled laboratory settings to variable field conditions is often fraught with inconsistency, representing the primary technical obstacle to large-scale adoption. Translational biotechnology is focused on overcoming this 'lab-to-field gap' through advanced bio-formulation technology, computational and genetic tools.

Recent Bio-formulation Technology

Bioformulations can be defined as formulations that contain living or latent biological agents such as beneficial microorganisms or their metabolites. These bioformulations have emerged as promising alternatives to conventional agrochemicals. These formulations enhance crop productivity along with maintaining soil health and ecological balance. Unlike single-strain inoculants, modern bioformulations are being designed to improve microbial survival, shelf life, field efficacy, and compatibility with existing agronomical practices (Aamir *et al.*, 2020).

Recent Bioformulation Techniques in Plant Disease Management

The growing concerns over the negative impacts of chemical pesticides have encouraged a shift toward more sustainable approaches for managing plant diseases. As a result, significant progress has been made in the development of bioformulation technologies. Recent studies show that microbial consortia, bioinspired nanomaterials, stimul-

responsive delivery systems, and bacteriophage-based formulations offer effective alternatives by improving disease control efficiency, stability under field conditions, and environmental safety. This review summarizes recent advances in microbial, nanotechnology-based, smart delivery, and phage-based bioformulations, with a focus on their formulation strategies, modes of action, and practical application in crop protection.

Concept and Evolution of Bioformulations

Bioformulations play an important role in protecting biological agents from environmental stress and helping them reach the infection site effectively. However, many biocontrol agents that perform well in laboratory conditions often fail to show the same effectiveness in the field due to exposure to temperature changes, moisture, and ultraviolet radiation. This clearly indicates that successful disease management depends not only on selecting efficient microbial strains but also on developing suitable formulation strategies. In addition, proper bioformulation development improves shelf life, ensures consistent field performance, and increases farmer acceptance, making it a key component of sustainable plant disease management.

Microbial Consortium-Based Bioformulations

Multifunctional microbial formulations are receiving increasing attention because they provide more effective and broad-spectrum disease control.

Studies have shown that formulations combining *Bacillus*, *Azotobacter*, and *Agrobacterium* are more effective in managing plant diseases than single-microbe products, as they significantly reduced *Fusarium* and *Alternaria* infections while improving crop yield. These formulations work through multiple complementary mechanisms, including the production of antimicrobial compounds, improved nutrient availability, and activation of plant defense responses. This combined activity highlights the importance of microbial synergy in enhancing overall plant protection.

Bioinspired Nanomaterials for Disease Management

Nanotechnology has become an important approach for enhancing the effectiveness of bioformulations in plant disease management. Bioinspired nanoparticles produced using plant extracts or microbial sources are environmentally friendly, economical, and show improved antimicrobial activity with lower toxicity compared to conventionally synthesized nanoparticles (Xu *et al.*, 2022). In addition, nanomaterials are capable of directly suppressing plant pathogens, triggering plant defense responses, and supporting disease detection, making them versatile tools for plant disease control (Rajwade *et al.*, 2020).

Stimuli-Responsive and Smart Nano Formulations

Smart delivery systems that respond to specific signals from pathogens represent an important advancement

in plant disease management. Researchers have developed temperature and pH-responsive polymer-based systems that release antimicrobial compounds only under conditions associated with infection, thereby reducing unwanted effects on non-target organisms and preventing early degradation of active ingredients. In a similar approach, redox-responsive mesoporous organo silica nanocarriers were designed to break down in the unique microenvironment created by fungal infections, allowing controlled fungicide release with improved light stability and longer-lasting disease control (Liang *et al.*, 2022).

Nanocarrier-Based Pesticide Protection and Targeting

pH-responsive ZIF-93 nanocarriers have been shown to greatly enhance the stability, controlled release, and antibacterial performance of kasugamycin against *Erwinia amylovora*, leading to improved disease control under field conditions while reducing phytotoxic effects (Chen *et al.*, 2025). Overall, these findings indicate that nanocarrier-based formulations protect active ingredients from degradation caused by ultraviolet light and chemical factors, while enabling targeted delivery at infection sites, thereby improving pesticide efficiency and effectiveness (Chen *et al.*, 2025).

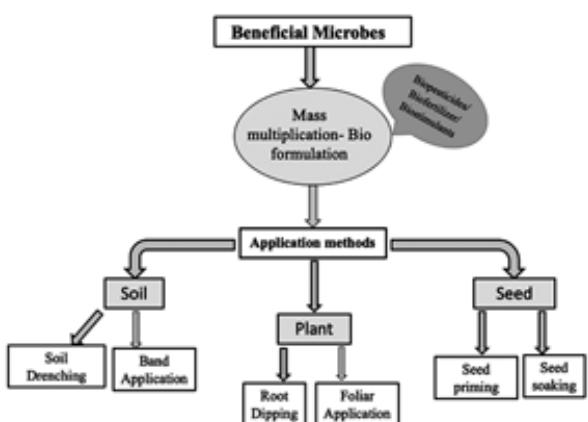
Bacteriophage Bioformulations for Bacterial Disease Control

Bacteriophages are highly specific biological control agents, but their effectiveness is often limited by environmental factors such as

ultraviolet radiation. Improved formulations using additives like polysorbate 80 and kaolin have been shown to enhance the UV tolerance and leaf surface persistence of *Erwinia* phages, allowing them to remain active on plant leaves for up to two weeks (Jo *et al.*, 2023). These findings clearly demonstrate that appropriate formulation additives are essential for successfully transferring phage-based disease control strategies from laboratory studies to practical field applications (Jo *et al.*, 2023).

Mechanisms of Disease Suppression

Bioformulations control of plant diseases through several complementary mechanisms, such as directly inhibiting pathogens, damaging their cell membranes, activating plant defense responses, and releasing active compounds in response to pathogen-specific conditions were well documented. It has been emphasized that protecting bioagents through proper formulation is essential for maintaining these mechanisms under variable and challenging field environments (Mawar *et al.*, 2021).


Challenges and Future Prospects

Although considerable progress has been made, challenges related to large-scale production, regulatory processes, and economic feasibility still limit the widespread adoption of bioformulations. Combining microbial consortia with smart nanocarriers and protective formulation additives is emerging as a promising approach to improve

stability under field conditions and ensure more consistent disease control performance (Xu *et al.*, 2021; Jo *et al.*, 2023).

Methods of Application of Bioformulation

Microorganism application to crops is limited by bioformulation constraints associated with bioformulation preparation and stability. However, modern tools like rotating drums, mixers, and sprayers, from industrial to field scale, have improved application efficiency and reduced labour. Bioformulations are typically applied via (i) soil inoculation, (ii) plant treatment (seedling/root dipping or foliar spray), or (iii) seed coating/soaking. Each application method has advantages and drawbacks, influenced by factors such as inoculant quantity, equipment needs, cost, and application area. In general, the choice of method for applying bioformulation depends on the crop type, effectiveness of the bioformulation, and the formulation's type or medium (Bejarano and Puopolo, 2020).

Figure 1. Application methodologies of Beneficial microbes

Soil Inoculation Method

This approach is practical for farmers because it covers large areas quickly and protects fragile seeds. This direct approach enhances interactions between multiple bacterial species and the rhizosphere leads to improve overall plant growth. Particularly, this method is effective against soil-borne phytopathogens by occupying infection sites. Soil can be treated with solid, liquid, or encapsulated bioformulations (Malusa *et al.*, 2012; Bashan *et al.*, 2014). Granular form contains peat, charcoal, perlite, or other soil materials. Other forms such as powders, slurries, and liquid inoculants can also be applied directly into the soil and found effective. The application methods include spreading of bioformulations on moist soil before sowing using granular applicators, hand, or mechanical sprayers. It can also be applied to standing crops, though uniform distribution is challenging and requires high concentration of bioinoculants (Vosatka *et al.*, 2012).

Plant Application

Plant-based bioformulation application involves delivering microbial inoculants directly to plants in two ways *viz.*, root dipping and foliar spraying. This approach allows the use of concentrated microbial doses and multiple applications of bioformulations which enhances plant colonization.

In foliar spray, wettable form or liquid formulations can be applied to the above-ground parts of plants by using equipment like hand sprayers and mechanized or aerial devices. Basically, this method

targets foliar pathogens and supplies nutrients directly to plant tissues. For example, foliar application of a liquid bioformulation containing a consortium of *Pseudomonas chlororaphis* (PA-23), *Bacillus amyloliquefaciens* (BS6 and E16), and *Pseudomonas* sp. (DF41) significantly reduced *Sclerotinia sclerotiorum* infection in canola (Fernando *et al.*, 2007). The major drawbacks of foliar application include the need for large quantities of inoculants, which can be costly and labour-intensive. However, the effectiveness of this method also depends on environmental conditions, being limited to low temperatures, high humidity, and fully turgid leaves at the time of application (Bejarano and Puopolo, 2020). On the other hand root dipping method involves immersing seedlings in a bioformulation solution before transplantation. For example, rice seedlings can be treated with a talc-based *Pseudomonas fluorescens* suspension to reduce incidence of bacterial leaf blight (Jambhulkar and Sharma, 2014). This method is effective because early colonization of the rhizosphere by inoculants eventually delimits the establishment of pathogens, thereby preventing disease development. Though root dipping requires nursery preparation, which is labour-intensive, time-consuming, and a mandatory step before transplantation (Adholeya *et al.*, 2005; Mahmood *et al.*, 2016).

Seed Application

Seed inoculation is the most common method for applying bioinoculants as it requires comparatively lower amount of bioformulation and broad applicability in cereal and legume seeds (Woomer *et al.*,

2014). This approach carries out plant growth-promoting microorganisms (PGPM) directly to the rhizosphere and in the case of endophytes, into plant tissues, clearing the way for intimate plant-microbe interactions (Philippot *et al.*, 2013). Seed inoculation can be carried out using various approaches depending on seed size, shape, weight, and available equipment. Traditionally, the method of seed application like Seed soaking which includes immersion of seeds in a bioformulation suspension or Seed coating including seed dressing, pelleting/encrusting, film coating, or slurry coating are practiced. Bio-priming, an advanced seed treatment that combines hydration and microbial bio formulation treatment before sowing (Joshi *et al.*, 2019; Rocha *et al.*, 2019). In seed coating, a slurry of carrier-based bioformulation, optionally with an adjuvant, is uniformly applied to seeds and dried to form a thin layer (Choi *et al.*, 2016). Application can be manual or by using equipment such as spinning drums, mixers, hydraulic machines, or automated seed coaters, with drying (Schulz and Thelen, 2008). Liquid bioformulations are typically sprayed onto seeds, followed by drying. An added benefit of this application is that seed treatment can modify seed characteristics (*viz.*, shape, size, or weight), improving sowing efficiency and ensuring delivery of effective inoculants (Halmer, 2008).

Multi-Omics Integration and Predictive Modelling

Translational research is moving towards high-throughput screening (HTS) techniques, which allow for the quick identification of high-performing strains

with stable, long-lasting functional features to overcome the limitations of sluggish, traditional microbial screening. The Biological Interface's multi-species complexity necessitates a system-level approach driven by multi-omics integration. A comprehensive and cohesive understanding of the interactions between PGPR, host plants, and environmental variables can be obtained by combining genomes, transcriptomics, proteomics, metabolomics, and phenomics. R&D advances beyond trial-and-error experimentation to predictive modelling of microbial and plant biological activity by integrating various molecular databases (DNA, RNA, proteins, and metabolites) into a single computational pipeline. This method accelerates the selection, optimisation, and breeding of crops for better stress-tolerance traits by strengthening genotype-to-phenotype mapping with machine learning (ML) and AI-driven analytics

Rational Design of Synthetic Communities (SynComs)

The logical creation of Synthetic Communities (SynComs), synthetic, multi-species microbial consortia intended for excellent collective performance and long-term field stability, is supported by multi-omics integration. In disturbed, heterogeneous ecosystems, conventional bio-inoculants that depend on a single microbial species frequently fail. Instead, SynCom design places a high priority on the deliberate selection of complimentary and compatible strains that are optimised for synergistic functions such coordinated pathogen suppression and metabolic cross-feeding, allowing for customised

solutions for specific agro- ecological constraints.

By utilising functional redundancy, which occurs when vital functions - such as nutrient mobilisation and biotic defense - are dispersed among several species, SynComs increase soil resilience. This guarantees continued community function even in the event that individual strains deteriorate under stress. SynComs provide designed ecological stability by preserving system-level persistence instead of strain-level reliance, which is a major advance above conventional single-strain formulations.

Synthetic Biology and Precision Genome Engineering for Bio-Product Stabilization

Modern synthetic biology techniques, particularly the CRISPR/Cas9 genome-editing technology, have made targeted engineering of beneficial bacteria possible (Jiang *et al.*, 2020). This method surpasses the accuracy of traditional strain discovery based on natural bioprospecting by enabling precise microbial genome alteration to improve and stabilise valuable agronomic features (Jiang *et al.*, 2020). Increasing constitutive expression of functional genes like ACC deaminase (ACCD) and strengthening cell walls to enable enhanced microbial survival, product robustness, and long-term field persistence are important applied goals.

The short shelf life of biological inputs—typically less than a year when stored without refrigeration—is a significant obstacle to their commercialisation, placing financial and logistical pressure on international delivery networks. In areas

where access to refrigeration is scarce or unstable, reliance on cold-storage infrastructure is a particularly significant obstacle to market expansion. By ensuring persistent and robust ACCD gene expression, for instance, CRISPR-guided strain engineering provides a strategic solution that can lessen downstream degradation risks and reduce supply-chain uncertainty. This strategy allows for larger, more scalable, and more economical product rollout by shifting cost pressure from costly logistics to high-value early R&D (Otieno *et al.*, 2022).

Corporate valuation models are also changing as a result of precision microbial engineering. Increasingly, patented genetic alterations that support engineered strains are seen as proprietary, financially protected, and legally defendable assets (Otieno *et al.*, 2022). As a result, the strength of the intellectual property (IP) portfolio protecting engineered genes, microbial formulations, and SynCom-level functional traits will determine the future market value of agricultural biotechnology companies more than strain origin. This will establish IP ownership as the primary competitive advantage and value driver in the microbial agricultural inputs sector.

Advanced Formulation and Delivery Systems: Bridging the Lab-to-Field Gap

Innovation in formulation and delivery systems is crucial for bridging the laboratory-to-field gap, as microbial viability is acutely sensitive to external environmental factors, including UV radiation, desiccation, and temperature fluctuations (Otieno *et al.*, 2022).

Table 3. Summary of Translational Strategies for Enhancing Bio-Product Persistence

Challenge Addressed	Translational Strategy	Mechanism of Enhancement	Citations
Inconsistent Field Efficacy	Rational Design of SynComs	Functional redundancy; ecological interaction engineering for stability.	Rillig <i>et al.</i> (2023)
Short Shelf Life/ Cold Chain	Precision Genome Engineering	Boosting constitutive expression of stability genes strengthened cell walls.	Jiang <i>et al.</i> (2020); Otieno <i>et al.</i> (2022)
Desiccation/ Thermal Stress	Biochar Microencapsulation	Porous structure shields microbes; biochar buffers soil pH and moisture content.	Liu <i>et al.</i> (2024)
Adaptation to Local Conditions	Indigenous Bioprospecting	Prioritizing evolutionarily conserved tolerance to localized abiotic stresses.	Al-Zahrani <i>et al.</i> (2024)

The Biochar-PGPR Integrated Carrier System: A Solution for Marginal Lands

Biochar (BC) which is a carbon-rich product derived from biomass pyrolysis, has emerged as an effective, multifunctional carrier for microbial inoculants, particularly when co-applied with PGPR in marginal and stress-prone agro-ecosystems. Its unique physicochemical characteristics, such as a highly porous matrix that forms protective micro-niches and enhances microbial endurance against desiccation and temperature stress are well documented (Liu *et al.*, 2024). Additionally, biochar improves soil quality by strengthening soil structure, reducing acidity, and raising cation exchange capacity (CEC), all of which promote better microbial establishment and plant growth (Liu *et al.*, 2024).

The effects of stress adaptation and field persistence are greatly enhanced by the biochar-PGPR combination. Under water-limited situations, biochar-assisted PGPR delivery in wheat has been demonstrated to improve drought tolerance and yield parameters such plant height and grain number (Fatima *et al.*, 2024). Similarly, its co-application reduced salt-induced limitations in sodic-saline soils more successfully than separate treatments (Kaur *et al.*, 2021).

Adoption of biochar concurrently resolves microbial-delivery constraints, enhances problematic soils (such as acidic lateritic and lateritic soils), and permits decentralised waste-to-value conversion because it can be made from agricultural residues by pyrolysis (Liu *et al.*, 2024). In the end, this integrated strategy promotes

food autonomy and resource-based food sovereignty by strengthening regional circular economy pathways, supporting local bio-input production chains, and lowering dependency on fossil-linked agro-chemicals.

Synergistic Consortia and Indigenous Bioprospecting

Coordinated usage of non-microbial biostimulants and multi-species microbial consortia strengthens the Biological Interface's functional resilience. Through extraradical mycelial networks, AMF forms crucial symbiotic relationships that significantly increase the effective root uptake zone and enhance soil resource acquisition. AMF supports sustained plant hydration and stress adaption under drought and salinity stress by enhancing water input and regulating root aquaporin expression (Liu *et al.*, 2024). Humic acids and seaweed extracts are examples of non-microbial biostimulants that enhance growth-related metabolic and physiological pathways. According to Liu *et al.* (2024), their use in conjunction with PGPR has been shown to significantly improve crop-growth indices under soil stress, including yield responses surpassing 60% in problematic soils.

Targeted isolation of native, stress-tolerant PGPR via region-specific bioprospecting is frequently associated with successful field results. These native isolates are functionally more robust under in-situ stress regimes due to their hereditary resilience to localised limitations such salt, acidity, and desiccation. This demonstrates that, despite the precision provided by genome-engineering methods, long-term industrial deployment still

requires on obtaining ecologically matched strains from the appropriate agroclimatic zones prior to the start of advanced trait editing or SynCom engineering (Al-Zahrani *et al.*, 2024).

Precision Agriculture and Digital Tools

By facilitating site-specific, data-driven crop management, precision agriculture and digital tools are essential strategic methods for reducing biotic and abiotic pressures. Early detection of pest and disease outbreaks and stress symptoms is made easier by technologies like remote sensing, geographic information systems (GIS), Internet of Things (IoT) sensors, and artificial intelligence (AI). This enables prompt and specific interventions that lower yield losses and pesticide misuse. In order to optimise irrigation, fertilizer management, and stress forecasting during drought, salinity, and temperature extremes, decision support systems and prediction models are helpful using weather, soil, and crop data reference.

Strategic Implementation and Policy Frameworks

Defining Integrated Biological Interface Management (IBIM)

Integrated Biological Interface Management (IBIM), a system that strategically combines customised multi-species microbial consortia with next-generation carrier technologies and regenerative farming techniques, is a forward-thinking concept for sustainable agriculture. IBIM increases inoculant effectiveness while promoting long-lasting benefits in soil structure, fertility, and ecological stability by matching microbial functions with particular soil conditions

and stress factors and integrating them into regenerative cultural techniques.

IBIM presents the plant-microbiome continuum as a strategic biological resource, where the microbiome is managed as a high-value functional asset to strengthen crop resilience and long-term soil capital, in contrast to traditional methods that consider bacteria as independent inputs. When biological products are incorporated into a comprehensive Integrated Nutrient Management (INM) approach, consistent improvements in yield and soil health have been extensively documented (Vessey, 2022).

Policy Spotlight: Financially Engineering the Transition (The PM-PRANAM Scheme)

The PM-PRANAM Scheme in India is an effective policy strategy for financially promoting the transition away from agriculture that uses a lot of chemicals. There is no need for a separate or designated budget because the programme is specially designed to reinvest savings from current fertiliser subsidies. This strategy deliberately shifts subsidy spending from ongoing financial obligations to long-term asset creation that promotes sustainable agriculture inputs.

Grants equal to 50% of the subsidy savings attained through lower chemical fertiliser consumption are given to states and the union territories under the program. Infrastructure development and adoption momentum are balanced by a clearly defined allocation framework: Seventy per cent (70%) funds are set aside for the development of technology-linked assets (such as biofertilizer manufacturing

facilities), with the remaining 30% going towards stakeholder incentives and awareness-raising campaigns.

The use of IBIM-aligned biological inputs must be backed by trustworthy digital monitoring systems that confirm transparency, show farmer ROI, and justify both economic and environmental benefits because public investment is dependent on quantifiable results. Building farmer confidence and demonstrating the practical benefits of biological transition techniques depend on this data-backed accountability loop.

The Critical Need for Regulatory Harmonization and Quality Control

The absence of uniform regulatory standards is a significant and expanding threat to farmer confidence and the stability of the worldwide biologicals industry. Inconsistencies in regulations lead to trade obstacles and inconsistent product performance, which can erode the confidence farmers need to implement these items widely.

Fertiliser quality control laboratories (FQCLs) must be upgraded, and strict, standardised testing protocols must be put in place to ensure the quality, identification, viability, and functional efficacy of commercial bio-products. High requirements for batch release and quality control of biological products are established by international organisations like the WHO, and agricultural biologicals urgently need to adopt these guidelines. Verifiable product performance is ensured by creating strong, internationally standardised quality control standards and bolstering national FQCLs.

Economic Valuation, Environmental Stewardship, and Future Outlook

Economic Returns: Cost-Benefit Analysis and the Resilience Dividend

By reducing reliance on synthetic fertilisers, which are frequently costly and prone to price fluctuation, the adoption of PGPR-based biofertilizers provides farmers with real economic benefits (Vessey, 2022). Biofertilizers lower input costs by improving soil fertility through important biological processes including phosphate solubilisation and nitrogen fixation.

These biological methods create a long-term economic benefit known as the resilience dividend by enhancing soil health and structural stability in addition to immediate cost savings. Biologically managed farming systems become more adaptable to climatic changes and yield variability by increasing water-use efficiency (WUE) and mitigating the effects of climate pressures like salinity and drought. This increased stability and security in crop production supports the strategic value of investing in the Biological Interface.

Monetizing Positive Externalities: Glomalin and Soil Carbon Finance

The shift to biological inputs support both long-term carbon sequestration and the decrease of greenhouse gas (GHG) emissions, which is in line with the goals of Climate-Smart Agriculture (CSA). The stabilisation of soil carbon over time is a crucial component in measuring the advantages of various approaches.

A quantifiable biomarker of this stabilisation is Glomalin-Related Soil Protein (GRSP), a specialised glycoprotein

that is mostly produced by Arbuscular Mycorrhizal Fungi (AMF) (Prasad *et al.*, 2021). Because GRSP is hydrophobic and extremely recalcitrant, it significantly improves the stability of soil aggregates. With a half-life of 6 to 42 years, its exceptional soil persistence and potent cementing qualities aid in binding soil particles, enhancing structural integrity, and halting the loss of carbon and nitrogen (Prasad *et al.*, 2021). GRSP is a trustworthy indicator for evaluating long-term carbon sequestration because of its high positive connection with soil organic carbon.

By integrating GRSP-based measures with standardised measurement procedures into national carbon accounting systems, governments can use carbon finance mechanisms to offer financial incentives for soil stewardship. This method provides a strong economic justification for the continued implementation of the Integrated Biological Input Management (IBIM) strategy by moving asset valuation beyond seasonal crop yields to recognise multi-year improvements in soil capital.

Conclusion

The body of research shows that incorporating the Biological Interface into conventional agriculture is the revolutionary change required to meet the extraordinary challenges of the twenty-first century. It is becoming more and more economically and environmentally unsustainable to continue relying on ecologically delicate, chemical-intensive systems, especially in light of the rising instability of the climate.

Adopting Integrated Biological Interface Management (IBIM) offers a framework that

has been scientifically proven to improve resource use efficiency, reduce biotic and abiotic stressors, and produce major environmental advantages, such as quantifiable long-term carbon sequestration. Building robust systems is already technically feasible. This promise is further reinforced by improved technologies, such as the ACC deaminase-mediated route, which has been thoroughly verified as a dependable mechanism for abiotic stress tolerance (Singh *et al.*, 2015). Precision synthetic biology (CRISPR/Cas9) (Jiang *et al.*, 2020) and multi-omics methods (Lee *et al.*, 2025) can be combined to create stable, functional Synthetic Communities (SynComs) that are adapted to local agricultural issues.

Additionally, the biochar–PGPR synergy provides a proven and scalable method to promote microbial persistence and restore degraded soils (Liu *et al.*, 2024; Kaur *et al.*, 2021). Governments can finance this structural shift by deliberately transforming fiscal liabilities into sustainable agricultural assets, as demonstrated by policy models like PM-PRANAM.

In the end, increasing systemic resilience through the management of microbial populations as an essential, functioning part of agroecosystems will be more important for ensuring global food security than increasing yields through chemical inputs.

Recommendations for Strategic Action

1. Prioritize Predictive Engineering Funding : Public and private capital must be rigorously prioritized for R&D aimed at the rational design of SynComs, utilizing multi-omics data

integration to ensure microbial stability and predictable field performance under specified environmental conditions. This investment should target the development of proprietary, defensible traits that enhance stability and persistence, thereby securing the economic viability of the biotechnology sector.

- 2. Harmonize and Standardize Quality Control :** Governments and international bodies must urgently collaborate to harmonize global regulatory standards for agricultural biologicals. This effort must be backed by significant investment in centralized, technologically advanced Fertilizer Quality Control Laboratories (FQCLs) to guarantee product quality, viability, and functional capacity, thereby stabilizing global trade and sustaining farmer confidence.
- 3. Monetize Soil Capital via GRSP :** Implement financial mechanisms, such as carbon credits and environmental stewardship payments, that recognize and monetize the long-term, verifiable carbon sequestration potential of the Biological Interface. This framework should utilize Glomalin-Related Soil Protein (GRSP) (Prasad *et al.*, 2021) as the key, stable metric for financial valuation, thereby rewarding farmers for environmental stewardship and building climate resilience into agricultural asset valuation.
- 4. Promote Indigenous Technology and Sovereignty :** National strategies should focus intensely on bioprospecting native, stress-adapted PGPR strains (Al-Zahrani *et al.*, 2024)

and establishing local production capacity for advanced carriers such as biochar (Liu *et al.*, 2024). This approach strategically utilizes existing policy mechanisms (such as PM-PRANAM's asset creation mandates) to build national food sovereignty and reduce dependence on volatile global supply chains.

References

Aamir, M., Rai, K. K., Zehra, A. and Dubey, M. K. 2020. Microbial bioformulation-based plant biostimulants: a plausible approach toward next generation of sustainable agriculture. *Microbial Endophytes*. pp. 195–225. doi: 10.1016/B978-0-12-819654-0.00008-9.

Abdel Rahman, M. A. E. 2019. Isolation and selection of highly effective phosphate-solubilising bacterial strains to promote wheat growth in Egyptian calcareous soils. *Ph.D. Monograph*, University of Hohenheim, Stuttgart, Germany.

Adholeya, A., Tiwari, P. and Singh, R. 2005. Large-scale inoculum production of arbuscular mycorrhizal fungi on root organs and inoculation strategies. (in) *In vitro culture of mycorrhizas* (Declerck, S., F., J.A., Strullu, D. G., eds.), Springer Publishing, Berlin, Germany. pp. 315–338.

Al-Zahrani, Y., Alshammary, N. and Al-Humaid, H. A. 2024. Native plant growth-promoting rhizobacteria containing ACC deaminase promote plant growth and alleviate salinity and heat stress in maize. *Plants* **14** (7): 1107.

Bashan, Y., de-Bashan, L. E., Prabhu, S. R. and Hernandez, J. P. 2014. Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). *Plant and Soil* **378** (1): 1–33. doi: 10.1007/s11104-013-1956-x.

Bejarano, A. and Puopolo, G. 2020. Bioformulation of microbial biocontrol agents for a sustainable agriculture. (in) *How Research Can Stimulate the Development of Commercial Biological Control Against Plant Diseases*, Springer Publishing, Cham, Switzerland. pp. 275–293.

Chen, C., Hao, B. and Shen, J. 2025. ZIF-93-based nanomaterials as pH-responsive delivery systems for enhanced antibacterial efficacy of kasugamycin. *Agronomy* **15**: 1535. doi: 10.3390/agronomy15071535.

Choi, E. S., Sukweenadhi, J., Kim, Y. J., Jung, K. H., Jung, K. H. and Hoang, V. A. 2016. Effects of rice seed dressing with *Paenibacillus yonginensis* and silicon on crop development. *Field Crops Research* **188** : 121–132. doi: 10.1016/j.fcr.2016.01.005.

European Commission. 2025. Farm to Fork Strategy. *European Commission Publication*.

European Commission. 2025. Bioeconomy strategy to drive green growth, competitiveness and resilience. *European Commission Press Release*.

Fatima, T., Faraz, A., Aftab, M., Waseem, M., Arshad, M. and Ashraf, M. 2024. Potential of drought-tolerant rhizobacteria amended with biochar on growth promotion in wheat. *Plant* **13**(9):1183

Fernando, W. G., Nakkeeran, S., Zhang, Y. and Savchuk, S. 2007. Biological control of *Sclerotinia sclerotiorum* by *Pseudomonas* and *Bacillus* on canola petals. *Crop Protection* **26** (2): 100–107. doi: 10.1016/j.cropro.2006.04.007.

Halmer, P. 2008. Seed technology and seed enhancement. *Acta Horticulturae* **771** : 17–26. doi: 10.17660/ActaHortic.2008.771.1.

Harman, G. E., Howell, C. R., Viterbo, A., Chet, I. and Lorito, M. 2004. *Trichoderma* species: opportunistic, avirulent plant symbionts. *Nature Reviews Microbiology* **2** (1): 43–56.

Jiang, W., Bikard, D., Cox, D., Zhang, F. and Marraffini, L. A. 2020. Expanding applications of CRISPR-Cas9 in microorganisms. *Microbial Cell Factories* **19** (1): 164.

Jambhulkar, P. P. and Sharma, P. 2014. Development of bioformulation and delivery system of *Pseudomonas fluorescens* against bacterial leaf blight of rice. *Journal of Environmental Biology* **35** (5): 843–849. doi: 10.1007/978-81-322-2644-4_13.

Jiang, W., Bikard, D., Cox, D., Zhang, F. and Marraffini, L. A. 2020. Applications of CRISPR-Cas9 systems in microorganisms. *Microbial Cell Factories* **19** (1): 164.

Joshi, D., Chandra, R., Suyal, D. C. and Kumar, S. 2019. Impacts of bioinoculants *Pseudomonas jesenii* MP1 and *Rhodococcus qingshengii* S10107 on chickpea yield and soil nitrogen status. *Pedosphere* **29** (3): 388–399. doi: 10.1016/S1002-0160(19)60807-6.

Kaur, G., Singh, N. and Kaushal, M. 2021. Biochar and PGPR enhance maize resilience in sodic-saline soils. *Frontiers in Plant Science* **12** : 718131.

Keswani, C., Singh, R. and Singh, H. B. 2023. Plant growth-promoting rhizobacteria in sustainable agriculture. *Springer International Book*, Springer Publishing, Switzerland.

Liang, Y., Wang, S. and Yao, Y. 2022. Degradable redox-responsive mesoporous organosilica nano-vehicles for smart fungicide delivery. *Nanomaterials* **12** : 4249.

Liu, H., Chen, C., Han, X., Li, X., Shi, W. and Chen, J. 2024. Synergistic interaction between biochar and PGPR on beneficial soil microbial communities. *Applied Soil Ecology* **198** : 105470.

Lugtenberg, B. and Kamilova, F. 2009. Plant-growth-promoting rhizobacteria. *Annual Review of Microbiology* **63** (1): 541–556.

Mahmood, A., Turgay, O. C., Farooq, M. and Hayat, R. 2016. Seed biopriming with PGPR: a review. *FEMS Microbial Ecology* **92** : fiw112. doi: 10.1093/femsec/fiw112.

Malusa, E., Sas-Paszt, L. and Ciesielska, J. 2012. Technologies for beneficial microorganisms used as biofertilizers. *Scientific World Journal* 491206, pp 1–12. doi.org/10.1100/2012/491206.

Mawar, R., Manjunatha, B. L. and Kumar, S. 2021. Adoption of bioformulations for sustainable disease management in Indian arid agriculture. *Circular Economy and Sustainability* **1** (4): 1367–1385.

Mei, C., Shang, Y., Wang, P. and Hu, C. 2022. Plant systemic resistance induced by beneficial rhizobacteria. *Frontiers in Plant Science* **13** : 952397.

Mordor Intelligence. 2025. Agricultural microbials market: size, trends and forecast. *Mordor Intelligence Market Report*.

Ngumbi, E. and Kloepper, J. 2016. Bacterial-mediated drought tolerance: current and future prospects. *Applied Soil Ecology* **105** : 109–125.

Otieno, N. E., Nyamangara, J. and Mungai, N. W. 2022. Effects of carrier materials and storage temperatures on biofertilizer viability. *Agriculture* **12** (2): 140.

Philippot, L., Raaijmakers, J. M., Lemanceau, P. and van der Putten, W. H. 2013. Microbial ecology of the rhizosphere. *Nature Reviews Microbiology* **11** : 789–799.

Pierce, F. J. and Nowak, P. 1999. Precision agriculture aspects. *Advances in Agronomy* **67** : 1–85.

Pieterse, C., Zamioudis, C., Berendsen, R. L. and Weller, D.M. 2014. Induced systemic resistance by beneficial microbes. *Annual Review of Phytopathology* **52** (1): 347–375.

Prasad, R., Kumar, A. and Sharma, M. 2021. Glomalin: a protein for carbon sequestration. *International Journal of Plant and Soil Science* **33** (11): 1–10.

Rajwade, J. M., Chikte, R. G. and Paknikar, K. M. 2020. Nanomaterials against phytopathogens. *Applied Microbiology and Biotechnology* **104** (4): 1437–1461.

Rillig, M. C., Ingrisch, J. and Tielen, M. 2023. Synthetic microbial communities for soil health. *Microbiome* **11** (1): 185.

Rocha, I., Ma, Y., Souza-Alonso, P., Vosátka, M., Freitas, H. and Oliveira, R.S. 2019. Seed Coating: A Tool for Delivering Beneficial Microbes to Agricultural Crops. *Frontiers in Plant Science* **10** : 1357.

Schulz, T. J. and Thelen, K. D. 2008. Soybean seed inoculant and fungicide treatment effects. *Crop Science* **48** (5): 1975–1983.

Singh, R. P., Shelke, G. M., Kumar, A. and Jha, P. N. 2015. Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants. *Frontiers in microbiology* **6**: 937.

Vessey, K. J. 2022. PGPR biofertilizers: past, present and future. *Frontiers in Plant Science* **13**: 1002448.

Vosátka, M., Látr, A., Gianinazzi, S. and Albrechtová, J. 2012. Mycorrhizal biotechnology development. *Symbiosis* **58** (1): 29–37.

Xu, L., Zhu, Z. and Sun, D.W. 2021. Sustainable bioinspired nanomodification strategies. *ACS Nano* **15** : 12655–12686.

Xu, M., Qi, Y., Liu, G., Song, Y., Jiang, X. and Du, B. 2023. Size-dependent nanoparticle transport in vivo. *ACS Nano* **17** (21): 20825–20849.

Woomer, P. L., Huisng, J., Giller, K., Baijukya, F., Speciose, K., Vanlauwe, B., Kyei-Boahen, S., Franke, L., Abaidoo, R.C., Dianda, M., Sanginga, J., Ronner, E., Van den Brand, G.J. and Schilt, C. 2014. N2Africa Final Report Phase-2009-2013. *N2Africa Report*, No. 73, Wageningen University, Netherlands.