
SATSA Mukhapatra - Annual Technical Issue 30 : 2026

148

ISSN 0971-975X

ABSTRACT

Soil fertility varies considerably across both space and time, and this

variability is particularly pronounced in the fragile landscapes of

Northeastern India. The region’s diverse physiography, heterogeneous

geology, shifting cultivation practices, and high-intensity rainfall create

complex patterns of soil formation and nutrient distribution. Assessing

such variability is crucial for sustainable land-use planning, efficient

nutrient management, and the adoption of climate-smart agricultural

practices. In recent years, geostatistical methods and digital soil mapping

(DSM) have proven to be reliable frameworks for quantifying and predicting

soil fertility patterns. These approaches, when combined with geographic

information systems (GIS), remote sensing, and advanced computational

tools, provide valuable insights into soil nutrient dynamics. This review

brings together recent research conducted across states such as Tripura,

Assam, Meghalaya, Nagaland, and Mizoram, as well as the Eastern

Himalayan foothill areas. The studies highlight spatial heterogeneity in

macronutrients, micronutrients, and soil organic carbon, demonstrating

the role of terrain, land use, and management intensity in driving soil

variability. Methodological advancements such as kriging, regression-

kriging, and machine learning algorithms have further improved the

accuracy of fertility prediction maps. These findings have direct implications

for site-specific nutrient management and sustainable intensification in

rain-fed and resource-constrained farming systems. Looking ahead, the

integration of DSM with proximal sensing, big-data analytics, and artificial

intelligence holds significant potential for refining soil fertility assessments

and supporting resilient agricultural planning in Northeastern India.

Keywords : Spatio-temporal fertility variability, GIS, Remote sensing,

Kriging, Machine learning, Proximal sensing, site-specific and Precision

nutrient management.

ICAR-National Bureau of Soil Survey and Land Use Planning, DK-Block, Sector-II, Salt Lake,

Kolkata, West Bengal  *Corresponding Author E-mail: reza_ssac@yahoo.co.in

Variability of Soil Fertility Using Geostatistical and

Digital Soil Mapping Techniques : A Comprehensive

Review of Northeastern India
S.K. Reza*, S. Chattaraj, S. Bandyopadhyay, Amrita Daripa,

Ruma Das, Shovik Deb, K.M. Hati and F.H. Rahman

(Received : November 07, 2025; Revised : January 02, 2026; Accepted : January 05, 2026)

Introduction

Soil fertility constitutes the cornerstone

of agricultural productivity and ecological

sustainability. It is not only a function of

inherent soil properties but also of dynamic

processes influenced by climate,
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topography, parent material, vegetation,

and anthropogenic activities. In the humid

tropics and sub-tropics, particularly in the

fragile hill ecosystems of Northeastern

India, soil fertility assumes greater

significance because of its direct

implications for food security, livelihoods,

and environmental conservation (Lal,

2009; Reza et al., 2012a; Bandyopadhyay

et al., 2015). The region, encompassing the

states of Assam, Meghalaya, Tripura,

Nagaland, Mizoram, Manipur, Arunachal

Pradesh, and Sikkim, is characterized by

high rainfall (2000–5000 mm annually),

steep topography, shifting cultivation

practices, and intense land-use pressures

(Das et al., 2021). These conditions foster

rapid nutrient cycling and strong spatial

heterogeneity in soil properties, making

uniform management recommendations

unsuitable.

Importance of Studying Spatial

Variability of Soil Fertility

Traditional soil survey methods,

though valuable, often fail to capture the

fine-scale variability that arises from

pedogenic processes and land-use

interactions (Jenny, 1941; Webster and

Oliver, 2007). Bulk sampling strategies

average out localized variations, leading to

blanket fertilizer recommendations that

can result in nutrient deficiencies in some

zones and surpluses in others (Reza et al.,

2017). Such inefficiencies are especially

problematic in Northeastern India, where

resource-poor farmers depend on thin soil

fertility margins to sustain crop

productivity. For example, Reza et al.,

(2019a, 2019b, 2020a) demonstrated that

even within relatively homogeneous

geomorphic units in Tripura, soil organic

carbon (SOC), nitrogen (N), and potassium

(K) exhibited significant small-scale

heterogeneity, influenced by micro-

topography and land-use intensity.

The consequences of ignoring this

variability are multi-fold: inefficient

fertilizer use, soil acidification, nutrient

imbalances, and environmental

degradation through runoff and leaching

(Srinivasarao, 2021). Moreover, the

variability of soil fertility has implications

beyond crop yield, it governs ecosystem

services such as carbon sequestration,

water regulation, and biodiversity

conservation (Lal, 2004). Therefore,

quantifying and mapping soil fertility

variability is a prerequisite for developing

site-specific nutrient management (SSNM),

precision agriculture practices, and

sustainable land-use strategies in the

region (Baruah et al., 2014).

Geostatistics in Soil Fertility Research

Over the past three decades,

geostatistics has emerged as a powerful

tool for quantifying and predicting spatial

variability of soil properties (Webster and

Oliver, 2007; McBratney and Pringle,

1999). Semivariogram analysis, kriging,

and cokriging have been applied

extensively to interpolate soil fertility

parameters, assess uncertainty, and link

soil variability to environmental covariates.

In Northeastern India, Reza and colleagues

(2010, 2012a, 2012b, 2016a, 2016b,

2019a, 2020a, 2021a, 2021b) pioneered

the application of geostatistical models to

characterize the variability of SOC, pH,

macronutrients, and micronutrients in

alluvial plains, piedmonts, and upland

agro-ecosystems. These studies

highlighted how sampling density, interval,
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and design critically influence the accuracy

of semivariogram parameters and

subsequent predictions.

For example, Reza et al., (2016c)

reported that suboptimal sampling inflates

nugget values and obscure’s multiscale

structure, thereby reducing interpretability.

Similarly, in the Brahmaputra floodplains,

nutrient maps generated through ordinary

kriging revealed strong spatial gradients

linked to depositional processes and land-

use intensity (Reza et al., 2019b). Beyond

interpolation, geostatistics has also

facilitated multi-scale analysis, uncertainty

quantification, and integration of auxiliary

information (Goovaerts, 1997; Hengl et al.,

2007).

Digital Soil Mapping: A Paradigm Shift

The emergence of digital soil mapping

(DSM) represents a paradigm shift in soil

science, moving from traditional survey-

based approaches toward predictive, data-

driven models (McBratney et al., 2003;

Minasny and McBratney, 2016). DSM

relies on the scorpan model [soil = f(s, c, o,

r, p, a, n)] that relates soil properties to

covariates such as soil samples (s), climate

(c), organisms/vegetation (o), relief (r),

parent material (p), age (a), and spatial

position (n). Advances in geoinformatics,

remote sensing, and machine learning

have greatly enhanced the predictive

capacity of DSM, enabling the production

of high-resolution, reproducible soil

property maps (Arrouays et al., 2020).

In Northeastern India, DSM has been

successfully applied to predict soil texture,

SOC, and nutrient stocks using terrain

derivatives, vegetation indices, and climate

data as covariates (Jena et al., 2023; Kumar

et al., 2023; Reza et al., 2024a). Chattaraj

et al., (2025) integrated machine learning

algorithms with environmental predictors

to predict the soil texture and lithological

discontinuity mapping for sustainable land

use planning in a part of Eastern Himalayan

foothills, India. Similarly, Shukla et al.,

(2024) demonstrated that DSM-based

approaches provide more detailed and

reliable maps than conventional

interpolation, particularly in heterogeneous

landscapes.

DSM is not merely a mapping tool; it

offers transformative potential for soil

resource management. Its applications

extend to soil fertility evaluation, erosion

risk assessment, SOC stock estimation,

and site-specific nutrient management.

Importantly, DSM outputs can be

periodically updated with new data,

making them dynamic and adaptive under

changing climate and land-use scenarios

(Hengl et al., 2015).

Linking Soil Fertility Variability to

Sustainable Agriculture

The integration of geostatistics and DSM

has direct implications for sustainable

agricultural management in Northeastern

India. Site-specific nutrient management

strategies, informed by spatial soil fertility

maps, can optimize fertilizer use efficiency,

reduce environmental losses, and enhance

farm profitability (Parihar et al., 2020;

Srinivasarao, 2021). Moreover, soil organic

carbon variability, as mapped by

geostatistical and DSM techniques,

provides insights into carbon sequestration

potential, which is critical for climate change

mitigation (Lal, 2004; Choudhury et al.,

2013; Reza et al., 2024a).

Several case studies illustrate this

potential. In Tripura, geostatistical
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mapping of SOC and nutrient variability

was used to delineate management zones,

facilitating precision fertilizer

recommendations (Reza et al., 2024a).

Across the Brahmaputra plains, DSM-

based nutrient maps have informed land

capability classification and fertilizer

targeting (Kumar et al., 2023). Similarly,

integration of soil fertility variability with

land-use data has highlighted the impacts

of shifting cultivation on nutrient depletion

and soil degradation in Nagaland and

Mizoram (Wapongnungsang et al., 2021;

Kumar et al., 2023).

Objectives of the Review

In light of the above, this review aims

to consolidate and critically assess the

advances in understanding soil fertility

variability in Northeastern India through

geostatistical and DSM approaches. The

specific objectives are: (1) to synthesize

findings on the spatial variability of soil

physical, chemical, and biological

properties across the region, (2) to examine

methodological advances in geostatistical

and DSM techniques applied to soil fertility

assessment, (3) to evaluate case studies

linking soil variability to land-use,

physiography, and management practices,

(4) to highlight implications for sustainable

agriculture, climate-smart nutrient

management, and soil carbon sequestration

and (5) to identify knowledge gaps and

outline future research directions for soil

fertility mapping in Northeastern India.

By integrating nearly four decades of

research, this review contributes to a

deeper understanding of soil fertility

variability and demonstrates how

geostatistical and DSM tools can transform

soil resource management for the fragile

yet vital agroecosystems of Northeastern

India.

Physiographic and Agro-ecological

Setting of Northeastern India

Northeastern India, comprising the eight

states of Assam, Arunachal Pradesh,

Manipur, Meghalaya, Mizoram, Nagaland,

Tripura, and Sikkim, represents one of the

most distinctive physiographic and agro-

ecological regions of the country. The

region extends between 21°34
/
 –29°50

/
 N

latitude and 88°05
/
 –97°30

/
 E longitude,

covering nearly 262,179 km² (about 8% of

India’s geographical area) (Figure 1), and

is characterized by a diverse topography

ranging from floodplains to rugged

mountains (Velayutham et al., 1999; Reza

et al., 2022).

Physiography

The physiography of Northeastern

India is dominated by three broad units

(Figure 2) :

(1) The Eastern Himalayas – spanning

Arunachal Pradesh and Sikkim,

characterized by steep slopes, high relief,

and young, fragile mountains formed mainly

of crystalline and sedimentary rocks.

(2) The Meghalaya Plateau – an

extension of the Indian Peninsular shield,

comprising Archean gneisses and granites,

interspersed with sandstone and limestone

formations. This plateau is dissected by

numerous rivers and is prone to high-

intensity rainfall.

(3) The Brahmaputra and Barak

Valleys – low-lying floodplains with fertile

alluvium, subject to annual flooding and

sediment deposition, making them

agriculturally productive but also
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ecologically fragile (Choudhury et al., 2022;

Jakhmola et al., 2023; Reza et al., 2021a).

The physiographic diversity leads to

pronounced differences in soil depth,

texture, drainage, and erosion

susceptibility, which directly influence

fertility and land-use potential.

Climate

The climate of the region is

predominantly humid subtropical to

perhumid, governed by the southwest

monsoon. Annual rainfall ranges from 1200

mm in rain-shadow zones to more than

11000 mm in Cherrapunji and Mawsynram,

making it one of the wettest places on Earth

(IMD, 2022). The rainfall is highly seasonal,

with more than 70–80% concentrated

between May and October. Temperature

varies from alpine conditions in the Eastern

Himalayas (below 0 °C in winter) to humid

subtropical in the valleys (average 24–27

°C in summer). Agroclimatic variability

creates multiple cropping systems, ranging

from temperate horticulture in Sikkim to

rice-based intensive agriculture in Assam

and shifting cultivation (jhum) in Mizoram

and Nagaland (Birthal et al., 2006; Kumar

et al., 2020).

Soils

The soils of Northeastern India are

diverse and closely linked to physiography,

parent material, and climate. According to

Velayutham et al., (1999), the major soil

orders include :

(1) Inceptisols – dominant in valleys

and piedmonts, moderately fertile, but

erosion-prone.

(2) Ultisols and Alfisols – widespread

on uplands and hill slopes; acidic, with

low base saturation and strong leaching

losses.

(3) Entisols – found in floodplains,

alluvial deposits, and shifting river courses;

variable fertility depending on sediment

load.

(4) Mollisols – restricted occurrence in

pockets of Sikkim and Arunachal Pradesh.

The soils are generally acidic (pH 4.5–

6.0), rich in organic carbon in surface

horizons due to forest cover, but deficient

in available phosphorus, exchangeable

bases, and micronutrients such as boron

and zinc (Reza et al., 2010; Panwar et al.,

2011; Reza et al., 2014a, 2014b, 2014c;

Manpoong and Tripathi, 2019; Dutta et al.,

2021). Soil erosion and nutrient depletion

are key challenges in uplands, while

sedimentation and fertility buildup are

common in floodplains.

Agro-ecological Zones

The Planning Commission and ICAR

(Sehgal et al., 1992; Velayutham et al.,

1999) have delineated the region into three

agro-ecological subregions (AESRs) within

the broader hot-humid to perhumid

ecosystem:

(1) AESR 17.1 (Eastern Himalayas,

Arunachal Pradesh, Sikkim): Cool to cold

perhumid climate, steep slopes, soils prone

to landslides; supports temperate

horticulture (apple, orange, large

cardamom) and shifting cultivation.

(2) AESR 17.2 (Meghalaya Plateau,

Nagaland, Manipur, Mizoram): Humid

perhumid climate, moderate to steep slopes,

acidic Ultisols and Alfisols; supports rice,

maize, pulses, ginger, and pineapple. Jhum

remains a dominant land-use.
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(3) AESR 17.3 (Brahmaputra and Barak

Valleys, Tripura, plains of Assam): Humid

climate, alluvial Inceptisols and Entisols,

highly fertile but flood-prone; supports

intensive rice, tea, sugarcane, and

vegetable cultivation.

This agro-ecological diversity

underpins the complexity of soil fertility

management. For instance, while nitrogen

and organic matter are generally adequate

due to biomass recycling, phosphorus

deficiency, soil acidity, and micronutrient

imbalances are widespread across zones

(Reza et al., 2012b, 2016a, 2024b; Singh

et al., 2020).

Soil Fertility Variability: Physical,

Chemical, and Biological Dimensions

Soil fertility is a multi-dimensional

property that emerges from the combined

behaviour of physical, chemical, and

biological soil attributes. In Northeastern

India, this complexity is accentuated by the

region’s unique physiographic and agro-

ecological setting, which includes steep

altitudinal gradients, humid subtropical to

per-humid climates, and highly

heterogeneous lithological formations.

These environmental factors, coupled with

diverse land-use practices such as shifting

cultivation, terrace farming, plantation

crops, and intensive rice-based systems,

generate pronounced horizontal (spatial)

and vertical (depth-wise) variability in soil

properties (Reza et al., 2012a; Choudhury

et al., 2013; Reza et al., 2021b).

Soil Physical Properties

Soil physical properties form the

structural foundation of fertility by

regulating soil-water-plant interactions,

root penetration, aeration, and ultimately

nutrient cycling. In Northeastern India, the

diverse physiography, from Brahmaputra

floodplains to Tripura uplands and Eastern

Himalayan foothills-creates pronounced

spatial and vertical heterogeneity in

texture, bulk density (BD), and soil

moisture regimes. Studies combining

classical laboratory analysis, geostatistics,

and digital soil mapping (DSM) approaches

have provided insights into the patterns

and processes governing these attributes

(Reza et al., 2012a; 2016c; 2017; 2021b;

Jena et al., 2023).

Texture and Particle-Size Distribution

Soil texture, determined by the relative

proportions of sand, silt, and clay, plays a

central role in controlling water retention,

infiltration, drainage, nutrient-holding

capacity, and soil aeration. It is therefore

considered a fundamental determinant of

soil fertility. In Northeastern India, strong

physiographic and lithological gradients

shape texture distribution at both

horizontal and vertical scales.

Reza et al. (2016c) used a geostatistical

framework to characterize spatial

variability in alluvial soils, showing that

landform and depositional processes

strongly influenced texture. Subsequent

work in Tripura (Reza et al., 2021b)

demonstrated systematic depth-wise

variability, where lowland alluvial plains

displayed finer textures with higher silt and

clay content in subsoil horizons, while

upland hill soils remained sandier and

coarser throughout the profile. Such

differences directly influence infiltration

capacity and nutrient storage potential.

Beyond traditional laboratory approaches,

DSM methods have expanded the scope of

texture mapping in the region.  Jena et al.,
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(2023) predicted particle-size fractions

across the North Eastern Region using

digital covariates (DEM derivatives, terrain

indices, vegetation indices) and machine

learning algorithms. They found that

terrain derivatives such as slope curvature,

elevation, and parent material were the

strongest predictors for clay and silt

fractions, demonstrating the utility of

covariates in capturing textural variability

over large areas. Chattaraj et al. (2025)

similarly highlighted lithological

discontinuities as key controls on textural

patterns in the Eastern Himalayan

foothills.

These findings indicate that spatial

heterogeneity in soil texture necessitates

differentiated management of irrigation,

tillage, and nutrient application. Fine-

textured zones require careful regulation

of water infiltration and nutrient retention,

whereas coarse-textured soils benefit from

more frequent irrigation and organic matter

additions to improve their water-holding

and nutrient-use efficiency.

Bulk Density

Bulk density (BD), a measure of soil

compaction and porosity, directly affects

root growth, soil aeration, and water

availability. In Northeastern India, BD

shows significant horizontal and depth-

wise variability due to landform,

management practices, and parent

material.

Reza et al. (2016c) applied a

geostatistical approach to characterize BD

variability in alluvial soils, demonstrating

that BD increased with soil depth and was

significantly higher in intensively

cultivated lands compared to undisturbed

forest soils. Later, Reza et al. (2021b)

showed fine-scale spatial patterns of BD

in Tripura, where terrace cultivation and

human-induced compaction led to

localized “hotspots” of elevated BD, while

natural forest sites exhibited lower values.

Such mapping is critical as localized

compaction zones restrict rooting volume

and impede nutrient and water uptake.

Techniques such as variogram modeling

and kriging have proven effective in

delineating small-scale BD variability,

enabling site-specific amelioration. The

identification of localized high-BD zones

allows targeted interventions such as deep

tillage, sub-soiling, or the incorporation of

organic amendments (e.g., farmyard

manure, biochar) to reduce compaction,

improve porosity, and restore soil fertility

(Das et al., 2019; Choudhury et al., 2018;

Gogoi et al., 2017).

Soil Moisture and Water-Holding

Capacity

Soil moisture dynamics are particularly

critical in the monsoonal climate of

Northeastern India, where rainfall is

intense but seasonal, and water availability

fluctuates widely. While short-term

moisture is highly dynamic, long-term

patterns exhibit strong spatial dependence

linked to soil texture, slope, drainage, and

landform position.

Reza et al. (2021b) investigated soil

moisture variability in Tripura and found

that fine-textured lowland soils retained

significantly higher moisture during dry

periods, whereas sandy upland soils

showed rapid drying. Seasonal monitoring

revealed that moisture variability followed

a structured spatial pattern, with inter-

annual stability at the same sites,

suggesting that soil–landform interactions



SATSA Mukhapatra - Annual Technical Issue 30 : 2026

155

impose persistent controls on moisture

availability. The integration of geostatistics

and DSM further enhances moisture

mapping. For instance, remote sensing–

derived indices (NDVI, LST) and DEM-

based attributes have been successfully

applied as covariates for predicting soil

water-holding capacity (Kaya et al., 2023).

Similar approaches have been

demonstrated in Northeastern India, where

DEM derivatives, rainfall surfaces, and

vegetation indices were integrated with

geostatistical methods to predict soil

moisture and hydrological parameters

across Tripura, Assam, and the

Brahmaputra plains (Agarwal et al., 2023;

Jena et al., 2023). Such approaches offer

practical tools for planning irrigation,

selecting drought-tolerant crop varieties,

and minimizing crop failure risks under

climate variability

Soil Chemical Properties

Soil chemical attributes define the

reservoir of nutrients available for plant

growth and strongly influence crop

productivity and sustainability. In

Northeastern India, the interplay of

physiography, rainfall regimes, parent

material, and land management practices

generates substantial heterogeneity in the

spatial and vertical distribution of soil

macronutrients and micronutrients. Among

these, nitrogen (N), phosphorus (P), and

potassium (K) remain the most critical for

crop growth, yet their availability is highly

variable across agro-ecological zones.

Macronutrients (N, P, K)

Macronutrient distributions in

Northeastern India show marked spatial

heterogeneity driven by parent material,

depositional processes, land use intensity,

cropping systems, and fertilizer

management history. Studies employing

both geostatistical and digital soil mapping

(DSM) approaches have helped quantify

and visualize these patterns, allowing for

the delineation of nutrient management

zones (Reza et al., 2012b; 2019c; 2020a;

2020b; Ramachandran et al., 2025).

Nitrogen (N) : Nitrogen, being highly mobile

in soils and closely tied to organic matter,

shows strong surface enrichment but

declines sharply with depth. Reza et al.

(2019c) reported that available N in the

Brahmaputra plains was significantly

higher in surface horizons (0–15 cm),

reflecting organic matter additions, root

biomass turnover, and manure application.

Similarly, in Tripura, Reza et al. (2020a)

demonstrated spatial hotspots of N

enrichment associated with organic

matter-rich soils under shifting cultivation

and lowland rice fields. Conversely, upland

soils with continuous cultivation and

reduced organic input showed depleted N

status.

Spatial variability studies using kriging

interpolation revealed a high nugget effect

for N, reflecting strong microscale

variability and the influence of

management practices (Reza et al., 2016b,

2017). DSM-based prediction models,

incorporating covariates such as NDVI,

elevation, and land use, improved

prediction accuracy and helped in

delineating N-deficient and N-rich

management zones (Jena et al., 2022).

Phosphorus (P) : Phosphorus availability

is especially constrained in Northeastern

India due to the predominance of acidic
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soils with high concentrations of Fe and

Al oxides that immobilize P through fixation

(Reza et al., 2012b; Kumar, 2015). Many

plateau and upland soils exhibit severe P

deficiency, while depositional plains show

somewhat better availability due to alluvial

inputs. Ramachandran et al. (2025)

mapped available P in Barpeta district

(Assam) and highlighted deficiency patches

coinciding with strongly acidic soils and

erosion-prone uplands. In Brahmaputra

plain, Reza et al. (2012b) observed similar

patterns, with upland soils exhibiting

critically low P (<10 kg ha-¹) while

floodplains maintained moderate levels.

Geostatistical mapping demonstrated that

P variability followed a moderate spatial

structure, with range values reflecting the

influence of lithology and landform. DSM

approaches using terrain derivatives and

parent material as covariates significantly

improved the mapping of P distribution

(Jena et al., 2022).

Potassium (K) : Potassium, though less

mobile than N, also displays notable spatial

variability across Northeastern India. In

alluvial soils of the Brahmaputra plains,

available K levels were found to be

sufficient or moderately high (Reza et al.,

2016b), reflecting mineralogical

contributions from parent material.

However, in eroded uplands and hill slopes

of Tripura, Reza et al., (2020b) reported K

depletion due to intensive cropping,

leaching losses, and low clay content.

Geostatistical analyses revealed that K

variability often displayed a stronger

spatial structure than N, suggesting the

importance of inherent soil properties

(texture, mineralogy) over short-term

management effects. DSM studies further

confirmed that covariates like slope,

elevation, and vegetation indices are strong

predictors of K distribution (Ramachandran

et al., 2025). The observed heterogeneity

in macronutrient availability underscores

the need for site-specific nutrient

management (SSNM). Nitrogen hotspots

can be managed with precision fertilizer

application to avoid overuse and leaching.

Phosphorus-deficient uplands require

liming, integrated use of P fertilizers, and

organic amendments to reduce fixation.

Potassium management must focus on

supplementing eroded uplands with

mineral K sources and recycling crop

residues. Geostatistical and DSM-based

nutrient maps can thus directly inform

precision agriculture and climate-smart

nutrient management practices in the

region.

Soil pH, Acidity, and Cation Exchange

Capacity (CEC)

Soil reaction (pH) and cation exchange

capacity (CEC) are critical chemical

properties that regulate nutrient

availability, microbial functioning, and soil

fertility sustainability (Al-Shammary et al.,

2024). In Northeastern India, the

predominance of high rainfall, leaching-

prone environments, and weathered parent

materials leads to widespread soil acidity

and variable CEC across landscapes. The

interaction between soil acidity, exchange

complex characteristics, and organic

matter inputs determines the capacity of

soils to supply and retain nutrients for crop

production (Maiumdar et al., 2022).

Most soils of Northeastern India are

acidic, with pH values commonly ranging

between 4.5 and 6.0, especially in upland

and plateau soils derived from granite-
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gneissic and sandstone parent materials

(Reza et al., 2012c; Baruah et al., 2014;

Bandopadhyay et al., 2015; Choudhury et

al., 2024). Strong leaching of bases under

humid tropical conditions, coupled with

intense weathering, results in base cation

depletion (Ca²+, Mg²+, K+) and dominance

of exchangeable acidity (H+  and Al³+ ). Reza

et al. (2012c) analyzed acidity patterns in

Assam soils and reported that upland and

shifting cultivation sites were strongly

acidic (pH <5.0), while lowland paddy soils

maintained relatively higher pH (5.5–6.0)

due to deposition and management.

Choudhury et al. (2024) mapped soil acidity

and micronutrient availability across the

Meghalaya Plateau using geostatistics.

They demonstrated strong spatial

correlations between pH, parent material,

and elevation-granite-derived uplands

showed more severe acidity than

sedimentary-derived valleys. Gangopadhyay

et al. (2015) reported that more than 85%

of Tripura’s cultivated soils are acidic,

constraining P availability and creating

conditions for Fe and Mn toxicity in

waterlogged sites.

Cation exchange capacity (CEC) reflects

the soil’s ability to retain and exchange

nutrient cations such as Ca²+ , Mg²+ , K+ ,

and NH
4
+. It is mainly controlled by clay

mineralogy and soil organic matter. Soils

with smectitic or illitic clays generally show

higher CEC, while kaolinitic and

sesquioxide-rich soils are lower (Yunan et

al., 2015). Organic matter contributes

significantly in acidic, weathered soils,

which dominate Northeastern India (Babu

et al., 2020). In this region, CEC is generally

moderate to low but highly variable across

physiographic units and land uses. Reza

et al. (2021b, 2022) showed that in Tripura,

CEC correlated positively with clay and

SOC, with alluvial plains recording higher

values than sandy uplands. In Arunachal

Pradesh, Reza et al. (2024b) reported that

shifting cultivation reduced organic matter,

which in turn lowered CEC and nutrient

retention. Choudhury et al. (2024) found

that in Meghalaya, forest soils maintained

higher CEC due to organic inputs, while

cropped uplands showed depleted

exchange capacity. Similarly, Hazarika

et al. (2019) noted that Brahmaputra

floodplain soils with finer textures and

higher organic matter exhibited higher

CEC compared to sandy levees. The

variability of CEC has important

management implications. Low-CEC soils

are more prone to leaching and nutrient

depletion, requiring organic matter

additions, conservation tillage, or

agroforestry to maintain fertility (Chatterjee

et al., 2015). In strongly acidic soils, liming

and biochar can enhance base saturation

and cation retention. Geostatistical and

DSM approaches now allow precise

mapping of CEC variability, supporting

site-specific nutrient management in the

fragile agro-ecosystems of Northeastern

India.

Micronutrients (Zn, Fe, Mn, B, etc.,) 

Micronutrients, though required in

trace amounts, are indispensable for plant

metabolic functions, enzymatic activities,

and overall soil–plant health. Deficiencies

or toxicities in these elements have direct

implications for crop productivity and

nutritional quality. In Northeastern India,

micronutrient variability is a persistent

issue, arising from the dominance of acidic

soils, intense monsoonal leaching, diverse

parent materials, and contrasting
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topographic and hydrological conditions

(Reza et al., 2016a; Bandyopadhyay et al.,

2018).

Spatial assessments across the region

consistently demonstrate high heterogeneity

in micronutrient availability. Reza et al.

(2021a) quantified the spatial variability of

zinc in Brahmaputra alluvial soils and

showed localized deficiency pockets that

did not align with blanket fertilizer

recommendations, highlighting the need

for site-specific interventions. Similarly,

Shukla et al. (2024) employed multivariate

tools such as principal component analysis

(PCA) and fuzzy clustering to delineate

management zones for multiple

micronutrients (S, B, Zn, Mn, Fe, Cu)

across the Northeastern hill ecosystem.

Their findings emphasized the strong co-

variation among nutrients and the

necessity of integrated management

strategies.

Element-specific patterns have also

been documented. Zinc and boron

deficiencies are widespread in upland and

highly weathered soils, particularly under

continuous cropping and shifting

cultivation systems (Shukla et al., 2019).

In contrast, iron and manganese often

show elevated availability in poorly drained

or waterlogged valley soils, sometimes

reaching toxic levels for sensitive crops

(Choudhury et al., 2024). Hazarika et al.

(2019) further reported that floodplain soils

of the Brahmaputra exhibited strong

spatial gradients in Fe and Mn linked to

drainage and depositional processes.

The interaction between soil acidity and

micronutrient status is a recurring theme.

Acidic conditions (pH < 5.5) commonly

enhance Fe and Mn solubility while limiting

the availability of Zn, B, and Mo (Choudhury

et al., 2024). This dual challenge of toxicity

in lowland soils and deficiency in uplands

complicates fertilizer management across

the region. Recent advances in geostatistics

and digital soil mapping (DSM) have

improved micronutrient mapping accuracy,

enabling the delineation of site-specific

deficiency zones and supporting precision

nutrient management (Reza et al., 2021a;

Shukla et al., 2024).

Overall, micronutrient variability in

Northeastern India reflects a complex

interplay of parent material, land use, soil

acidity, and hydrology. Site-specific

recommendations, organic amendments,

liming, and micronutrient-enriched

fertilizers are crucial to overcome these

limitations. Mapping-based approaches

not only capture the fine-scale

heterogeneity but also provide actionable

insights for enhancing crop productivity

and soil health in the fragile agro-

ecosystems of the region.

Soil Organic Carbon and Biological

Indicators

Soil organic carbon (SOC) and

biological indicators together form the

backbone of soil fertility assessment, as

they integrate the physical, chemical, and

ecological processes that determine soil

functioning. SOC serves as the primary

reservoir of energy and nutrients for soil

organisms, influencing aggregation,

porosity, and water-holding capacity, while

simultaneously regulating nutrient cycling

and long-term carbon sequestration.

Biological indicators such as microbial

biomass carbon and nitrogen, enzymatic

activities, and soil fauna diversity act as

sensitive proxies of soil health, reflecting
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changes in land use, organic matter inputs,

and management intensity much earlier

than many chemical properties. Their

combined assessment provides a holistic

view of ecosystem resilience, since soils

with high SOC and active biological

functioning can better buffer against

erosion, nutrient depletion, and climatic

variability. In agro-ecosystems like those

of Northeastern India, where fragile hill

slopes, shifting cultivation, and high

rainfall intensities create inherent

instability, the joint monitoring of SOC and

biological indicators becomes essential for

designing sustainable soil fertility

strategies that balance productivity with

ecological stability.

Soil Organic Carbon (SOC) Stocks and

Fractions

Soil organic carbon (SOC) forms the

foundation of soil health, underpinning

critical functions such as nutrient supply,

aggregate stability, water retention, and

long-term carbon sequestration (Lal, 2019).

In Northeastern India, the variability of

SOC is strongly mediated by physiographic

heterogeneity, intense rainfall regimes,

diverse land uses, and traditional

management practices such as jhum

(shifting cultivation). Multiple regional

studies confirm that SOC stocks and

fractions vary significantly across land-use

systems, topographic positions, and soil

depths.

Reza et al. (2019b, 2020b) quantified

SOC variability in Tripura and reported

that forest soils and less-disturbed

grasslands maintained higher SOC stocks

than cultivated and jhum fields,

particularly in the upper horizons. This

aligns with the findings of Sanjita and

Binoy Singh (2018), who highlighted that

sacred groves of Manipur preserve higher

SOC concentrations compared with

surrounding agricultural landscapes,

emphasizing the conservation role of

traditional ecological sanctuaries.

Similarly, Choudhury et al. (2016)

documented SOC variation across

altitudinal gradients in the northeastern

Himalayan region and found that both

altitude and associated agro-physical

factors influenced SOC concentrations.

Several studies highlight the impact of

land-use transitions on SOC depletion.

Saplalrinliana et al. (2016) and Sahoo

et al. (2023) observed that the conversion

of forests to shifting cultivation in Mizoram

led to significant SOC loss, driven by

biomass burning and reduced litter inputs.

Nath et al. (2018, 2021) also noted rapid

SOC decline in degraded jhum cycles, with

marked reductions in labile carbon

fractions. In a regional-scale study, Ray

et al. (2021) demonstrated how shifting

cultivation accelerates soil degradation and

SOC depletion across the northeastern hill

region, and emphasized the role of

geospatial techniques in land-use planning

to mitigate carbon losses. In Assam, Hota

et al. (2022) reported that continuous

cultivation in the Brahmaputra floodplains

reduced SOC content, while forest and

pasture systems retained higher labile

pools.

Soil Biological and Functional

Indicators

Biological indicators provide dynamic

insights into soil fertility because they

directly reflect soil processes such as

nutrient cycling, organic matter turnover,

and resilience to disturbances (Bünemann
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et al., 2018). Unlike static physical and

chemical properties, biological attributes

are sensitive to land-use change,

management practices, and climate

variability, making them critical tools for

soil quality assessment in Northeastern

India.

Microbial biomass carbon (MBC) and

nitrogen (MBN) are widely recognized as

labile pools of nutrients and as indicators

of soil biological activity. Lungmuan et al.

(2017) documented significant spatial

variation of MBC and MBN across land

uses in Mizoram, with higher values under

forest and grasslands compared to cropped

uplands and shifting cultivation fields.

Lalmuansangi et al. (2022) found that

microbial biomass was highly responsive

to land-use intensity in Meghalaya, where

forest soils supported greater microbial

pools than cultivated terraces. Similar

trends were reported by Nath et al. (2021)

in degraded jhum cycles, where microbial

pools were reduced by repeated burning

and shortened fallow periods, indicating

loss of biological resilience.

Soil enzyme activities provide

functional measures of nutrient cycling

potential. Acid and alkaline phosphatase,

dehydrogenase, and urease activities have

been widely studied in Northeastern India.

Lungmuana et al. (2019) observed that

enzyme activities were significantly higher

in forest soils compared to shifting

cultivation and cropped lands in Mizoram,

demonstrating the depletion of functional

potential with disturbance. Reza et al.

(2014c, 2018b) reported that phosphatase

activity strongly correlated with available

phosphorus in Assam soils confirming its

utility as a biological indicator of P

dynamics. De et al. (2022) also highlighted

the role of enzyme assays in constructing

soil quality indices (SQIs), which captured

the impacts of land use and elevation on

soil functioning.

Soil macro- and mesofauna, including

earthworms, termites, and nematodes,

contribute to litter decomposition,

aggregate stability, and nutrient

mineralization. Zodinpuii et al. (2019)

reported that earthworm abundance and

diversity were significantly reduced under

shifting cultivation in Mizoram compared

to natural forests, which supported higher

soil faunal biomass. Sanjita and Binoy

Singh (2018) noted that sacred groves in

Manipur not only conserved higher SOC

but also maintained diverse soil faunal

communities, underlining the link between

biodiversity conservation and soil function.

Overall, the synthesis of physical,

chemical, and biological dimensions

reveals that soil fertility variability in

Northeastern India is strongly scale-

dependent and process-driven, reflecting

interactions between geomorphic setting,

climate forcing, and anthropogenic

interventions. Table 1 and 2 summarize the

key studies quantifying variability across

these three dimensions, offering a compact

reference for understanding soil fertility

heterogeneity in the region.

Geostatistical and DSM Approaches to

Soil Fertility

Geostatistics and digital soil mapping

(DSM) have emerged as powerful tools to

unravel spatial variability of soil fertility,

particularly in the heterogeneous

landscapes of Northeastern India.

Geostatistical techniques such as
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variogram modeling and kriging allow

quantification of spatial dependence and

creation of high-resolution fertility maps

that capture fine-scale variability across

land uses, topographic positions, and

management intensities (Reza et al., 2016c;

2017). Complementing this, DSM

integrates field observations with

covariates derived from remote sensing

indices (e.g., NDVI, LST), digital elevation

models, and climatic datasets to predict

soil properties and delineate management

zones with greater accuracy (Kaya et al.,

2023; Reza et al., 2024a;). Together, these

approaches provide robust frameworks for

identifying nutrient-deficient hotspots,

guiding site-specific nutrient management,

and supporting sustainable land-use

planning in regions where conventional

blanket fertilizer recommendations are

ineffective due to sharp biophysical

gradients.

Geostatistical Approach to Soil Fertility

Geostatistical techniques provide a

rigorous framework to quantify, model, and

predict the spatial variability of soil fertility

in heterogeneous landscapes such as those

of Northeastern India. The central element

of geostatistics is variography, which

characterizes the spatial dependence of soil

attributes through semivariogram

parameters (range, sill, nugget). Studies in

the region (Reza et al., 2016c, 2017; Bhunia

et al., 2018) have shown that variograms

reveal the scale of spatial correlation in soil

properties such as pH, organic carbon,

macronutrients, and micronutrients, with

shorter ranges often observed in upland

and jhum-cultivated soils due to high

anthropogenic disturbance, and longer

ranges in alluvial plains where depositional

processes dominate.

Once spatial structure is established,

kriging and its variants (ordinary, universal,

indicator, regression kriging) are widely

used for interpolation and mapping of soil

fertility indicators. For example, Reza et al.

(2016b, 2019a) applied ordinary kriging to

delineate nitrogen, phosphorus, and

potassium distribution in the Brahmaputra

plains and Tripura, successfully identifying

nutrient-deficient zones for targeted

management. Similarly, indicator kriging

has been used to map soil acidity and

micronutrient deficiencies, improving the

delineation of critical thresholds for fertilizer

recommendations (Choudhury et al., 2024).

Digital Soil Mapping (DSM) Approach to

Soil Fertility

Digital Soil Mapping (DSM) has

emerged as a powerful approach for

predicting and visualizing soil fertility

indicators in complex and data-scarce

landscapes such as Northeastern India.

Unlike traditional survey methods, DSM

integrates georeferenced soil observations

with spatially exhaustive covariates derived

from terrain, remote sensing, and climate

data to produce high-resolution soil

property maps. These tools are particularly

suited for the region’s rugged topography,

heterogeneous parent material, and diverse

land uses.

The increasing availability of high-

resolution environmental covariates has

supported the application of digital soil

mapping (DSM) frameworks. DSM

integrates field observations with

predictors such as remote sensing indices

(NDVI, LST), digital elevation model (DEM)-
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derived terrain attributes (slope, curvature,

topographic wetness index), and climatic

surfaces to model fertility indicators. For

instance, Reza et al. (2024a) demonstrated

the utility of DSM in delineating soil organic

carbon hotspots across the Northeastern

Himalayas, while Jena et al. (2022)

combined DSM with terrain covariates to

map soil pH and micronutrient availability.

These approaches enhance prediction

accuracy, especially in areas with sparse

sampling, by capturing soil–landscape–

climate interactions.

In recent years, machine learning

algorithms such as Random Forest (RF),

Support Vector Machines (SVM), Gradient

Boosting Machines (GBM), and Cubist

models have been increasingly integrated

into DSM frameworks. Their ability to

handle nonlinear relationships and high-

dimensional data makes them suitable for

predicting soil fertility parameters in the

complex physiographic settings of

Northeast India. Studies (Reza et al., 2024a)

report that ensemble models such as RF

and GBM outperform traditional regression

approaches in predicting SOC, especially

when combined with remote sensing and

climatic covariates.

Finally, the credibility of geostatistical

and DSM outputs depends on robust

validation. Commonly used methods

include cross-validation, RMSE (Root Mean

Square Error), ME (Mean Error), and

concordance statistics. Validation

exercises in the region (Reza et al., 2019c;

Choudhury and Mandal, 2021) indicate

that while kriging provides reliable

interpolations for densely sampled

datasets, DSM and machine learning

approaches offer superior performance in

data-sparse and heterogeneous terrains.

Integrating these methods has been shown

to improve soil fertility mapping and

support site-specific management, climate-

resilient agriculture, and sustainable land-

use planning in the region. Table 3 and 4

summarize the key studies quantifying

variability across these three dimensions,

offering a compact reference for

understanding soil fertility heterogeneity

in the region using geoatatisitical and DSM

approaches.

Implications and Future Perspectives

The synthesis of soil fertility variability

research in Northeastern India

underscores several implications for

sustainable land management. First, the

pronounced spatial heterogeneity of

macronutrients and micronutrients

highlights the need for site-specific

nutrient management (SSNM) rather than

blanket fertilizer application. Geostatistical

and DSM-based fertility maps provide a

scientific basis for delineating management

zones, improving fertilizer use efficiency,

reducing input costs, and minimizing

environmental risks such as nutrient

leaching and eutrophication. Adoption of

precision agriculture tools tailored to the

Northeast’s diverse cropping systems can

directly improve farm productivity and

livelihoods.

Second, the mapping of soil organic

carbon (SOC) stocks and fractions points

to significant opportunities for enhancing

carbon sequestration. Forests, wetlands,

and traditionally managed agroecosystems

act as SOC reservoirs, while shifting

cultivation and intensive cropping have led

to SOC depletion in vulnerable landscapes.

High-resolution SOC maps can be
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integrated into carbon credit schemes and

climate-smart agriculture programs,

ensuring that the Northeast contributes to

India’s climate mitigation targets while

enhancing soil health.

Third, these findings have strong

implications for sustainable agriculture

and land use planning. By integrating soil

fertility data with agro-ecological zoning,

policymakers and planners can optimize

land allocation, identify degraded hotspots,

and prioritize restoration strategies. In

erosion-prone uplands and jhum areas,

targeted interventions such as

agroforestry, contour farming, and organic

amendments can stabilize soils and restore

fertility. Similarly, integrating geostatistics

and DSM outputs into watershed-level

planning supports resource-efficient

irrigation, crop diversification, and climate-

resilient farming systems.

Finally, several research gaps and

future directions remain. There is a need

for more high-density, harmonized soil

sampling networks to improve the

robustness of geostatistical and DSM

predictions. Multi-temporal soil monitoring

under different land-use trajectories is

critical for understanding fertility dynamics

under climate change. The integration of

proximal sensors, UAV-based hyperspectral

imaging, and big-data analytics could

significantly advance predictive modeling of

soil properties. Moreover, participatory

approaches involving local farmers and

indigenous knowledge should complement

technical assessments to ensure context-

specific management strategies.

The future of soil fertility research and

management in Northeastern India lies in

bridging advanced spatial technologies with

local realities, enabling evidence-based

policies, resilient farming practices, and

sustainable natural resource use in this

ecologically sensitive and agriculturally vital

region.

Conclusion

This review highlights the significant

progress made in understanding the

spatial variability of soil fertility in

Northeastern India, an ecologically

sensitive region marked by complex

physiography, diverse parent materials,

and highly dynamic land-use systems.

Across physical, chemical, and biological

dimensions, soils in the Northeast display

strong heterogeneity that is shaped by

topography, lithology, intense monsoonal

rainfall, and human interventions such as

shifting cultivation and intensive cropping.

These patterns underscore the limitations

of blanket fertilizer recommendations and

call for site-specific, evidence-based soil

management.

The synthesis of soil physical properties

reveals pronounced spatial gradients in

texture, bulk density, and soil moisture

regimes, each exerting a strong influence

on root growth, nutrient dynamics and

water availability. Chemical properties

including macronutrients, micronutrients,

pH and cation exchange capacity are equally

variable, with deficiencies of nitrogen,

phosphorus, potassium, zinc, and boron

emerging as recurrent challenges. Biological

indicators such as soil organic carbon,

microbial biomass, enzyme activities, and

soil quality indices further demonstrate how

fertility interacts with land use,

conservation practices, and climate

variability.
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Geostatistical approaches have

provided critical insights by quantifying

spatial structures through semivariograms

and kriging, while digital soil mapping

(DSM) has leveraged environmental

covariates, remote sensing, and machine

learning to produce high-resolution fertility

maps. Together, these techniques have

enabled the delineation of nutrient

management zones, identification of SOC

hotspots, and prediction of fertility

constraints across scales. The integration

of geostatistics with DSM has proven

particularly valuable in enhancing

predictive accuracy, reducing uncertainty,

and linking soil properties to terrain and

land-use drivers.

From a management perspective, the

implications are clear. Site-specific

nutrient management (SSNM), carbon

sequestration strategies, precision

agriculture practices, and climate-smart

interventions are urgently needed to

balance productivity with sustainability. At

the same time, several research gaps

persist, including the need for denser

sampling networks, multi-temporal

monitoring, the incorporation of proximal

and UAV-based sensing, and participatory

approaches that embed local knowledge

into spatial decision-support frameworks.

Geostatistical and digital soil mapping

(DSM) approaches have substantially

advanced soil fertility evaluation by

enabling spatially explicit predictions;

however, several critical limitations

constrain their reliability and broader

applicability. The effectiveness of these

methods is strongly dependent on

sampling density and design, with sparse

or uneven datasets often yielding unstable

variogram models and uncertain kriging

estimates, particularly in heterogeneous

agricultural landscapes. Moreover,

classical geostatistical assumptions of

stationarity and isotropy are frequently

violated under intensive land use, leading

to biased representation of nutrient

distributions. While DSM leverages

environmental covariates and machine

learning to enhance spatial resolution, the

indirect and often non-stationary

relationships between soil properties and

covariates limit model transferability

across regions and time. Scale mismatches

between point-based soil observations and

coarse-resolution remote sensing or terrain

data further obscure fine-scale nutrient

variability, especially for management-

sensitive attributes such as available

nitrogen, phosphorus, and potassium. The

predominantly static nature of DSM

products also fails to capture temporal

dynamics driven by fertilization, cropping

systems, and climate variability. Although

machine learning improves predictive

accuracy, its black-box nature reduces

interpretability and hampers process-

based understanding and practical

adoption. Additionally, uncertainty

quantification remains incomplete, as

combined uncertainties arising from

sampling, covariate quality, and model

structure are rarely fully propagated. High

data and computational demands further

restrict application in data-poor regions.

Collectively, these limitations highlight that

geostatistics–DSM frameworks, while

powerful, should be complemented with

temporal monitoring, agronomic

knowledge, and field-scale validation to

ensure robust and actionable soil fertility

assessments.
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Figure 1. Map showing northeastern India

Figure 2. Physiography map of northeastern India



SATSA Mukhapatra - Annual Technical Issue 30 : 2026

175

Table 1. Summary of soil physical variability studies in Northeastern India

Study area Soil properties Method/Approach Key findings Reference

Lower Texture, bulk Geostatistics, Alluvial depositional Reza et al., 2016b,

Brahmaputra density GIS mapping patterns create spatial 2017

plains; alluvial gradients in texture;

soils sampling design critically

affects semivariogram

interpretation.

Assam Various physical Geostatistics Spatial structure Reza et al., 2019a

(Tinsukia  properties identified with moderate-

district) range variograms;

implications for

sampling design.

Tripura Bulk density, Field profiles, Demonstrated significant Reza et al., 2021b

particle-size laboratory horizontal & vertical

distribution, particle-size, heterogeneity; BD

soil moisture geostatistics increases with depth;

(horizontal & (variogram, micro-topography

vertical) kriging) influences moisture and

texture distribution.

Tripura Bulk density, Landform Strong landform–soil Reza et al., 2022

(Purvanchal  texture, and soil relationships; vertical

range)  moisture analysis stratification of texture

and bulk density

Nagaland Soil texture, Field Variation in soil texture Ray et al., 2022

(Wokha bulk density sampling, and BD across land-use

district) GIS systems

Meghalaya Particle size DSM, Soil texture was

state distribution environmental significantly more precise Jena et al., 2023

(Ri-Bhoi (sand, silt and covariates, and they accurately

district) clay) Random depicted the spatial

Forest model variations spatial

variations of particle-

size fractions.

Eastern Texture, DSM using Improved mapping of Chattaraj et al.,

Himalayan lithological covariates texture using machine 2025

foothills discontinuity (DEM, RS learning; lithological

indices) control on soil variability,

useful for land-use

planning.
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Table 2. Summary of soil nutrient variability studies (macronutrients and

micronutrients)

Study area Nutrients analyzed Method/Approach Key findings Reference

Assam Available N, P, K Multivariate statistics, Strong spatial Reza et al., 2012a,
(Brahmaputra Geostatistics, GIS dependence of 2012b, 2015a,
plains) macronutrients, tied to 2016b

floodplain processes

Assam Heavy metals Geostatistics, Identified hotspots Reza et al., 2013,
(Industrial/ (Fe, Mn, Pb, Cd)  pollution indices near industrial 2014d, 2015,
coal-mine sources; spatial 2018c
affected areas) heterogeneity

influenced by
proximity to proximity
pollution sources.

Nagaland & SOC, micronutrients SQI, biological Decline in SOC and Reza et al., 2014c,
Mizoram indicators micronutrients under 2018b;

shifting cultivation Mukhopadhyay
et al., 2025

Tripura SOC, bulk density Soil profile sampling, Significant vertical Reza et al., 2019b
(Bishalgarh GIS variability of SOC
blocks)

Tripura SOC, SOC fractions Soil profile sampling, SOC stratification Reza et al., 2020b
(Charilam block) GIS  by land use

Brahmaputra Available Zn Semivariogram, Patchy distribution Reza et al., 2021a
plains kriging of Zn; moderate

spatial dependence

Assam Macro- and GIS-based mapping Heterogeneous Bhuyan et al.,
(Biswanath micronutrients nutrient availability; 2023
district) need for site-specific

nutrient management

Upper Soil organic carbon DSM with ML (RF, RF outperformed Kumar et al.,
Brahmaputra SVM, GBM) others; SOC strongly 2023
Valley controlled by elevation

and vegetation

Meghalaya Soil acidity, DSM, covariates Strong link between Choudhury et al.,
Plateau micronutrients (DEM, RS) acidity and 2024

Zn, B, Mn, Fe, Cu) micronutrient
availability; DSM
improved spatial
prediction

Sub-tropical S, B, Zn, Mn, PCA, fuzzy Delineated nutrient Shukla et al.,
NE India Fe, Cu clustering, management zones (2024)
(multi-state) DSM using multivariate

clustering; useful
for precision nutrient
management.

Assam Soil nutrient status GPS-guided sampling, Mapped nutrient-rich Ramachandran
(Barpeta (NPK & others) GIS mapping, and deficient zones et al., (2025)
district) statistical analysis to inform sustainable

fertilizer management.
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Table 3. Summary of geostatistical applications in Northeastern India

Study area Soil properties Methods Key findings Reference

Brahmaputra SOC, N, P, K Semivariogram, OK Moderate–strong Reza et al.,

Valley, Assam dependence; SOC 2016b

strongly structured

Tripura N, P, K OK, UK Hotspots aligned Reza et al.,

with intensive 2019a

cropping zones

pH, micronutrients OK Short-range pH, micronutrients Reza et al.,

variability; site- 2019a

specific liming

needed

Mizoram (jhum land) SOC, N Cokriging with Reduced prediction Saha et al.,

slope & NDVI error 2020

Brahmaputra Plains SOC, nutrients Regression Kriging SOC as major Singh et al.,

predictor of fertility 2021

gradients
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Table 4. DSM applications in Northeastern India (soil property, dataset, method,

performance metrics)

Study area Soil Key Method / Performance Key Reference

properties covariates Model (R² / RMSE) outcomes

mapped used

NE hill N, P, K DEM, LULC, Regression- R² = 0.55–0.62 Effective for Bhunia

region (West rainfall Kriging delineating et al.,

Bengal– nutrient 2018

Assam variability

border) under mixed

land uses

NER Particle-size Terrain Random R² = 0.70–0.76 Terrain and Jena

(multi-state) fractions attributes, Forest,  lithology strong  et al.,

(sand, silt, parent material, Cubist predictors of silt/ 2023

clay) land use clay fractions;

upland–lowland

contrasts

well captured

Meghalaya Soil pH and Elevation, slope, Regression- R² = 0.60 Identified Choudhury

Plateau micronutrients land use, NDVI Kriging, RF strong spatial et al.,

(Zn, B, Fe) dependence 2024

of acidity and

micronutrients

with parent

material and

elevation

Sub-tropical Multi- Remote sensing PCA + Fuzzy Not reported Management Shukla

NE India micronutrients indices, DEM Clustering zones for et al.,

(Zn, Mn, Fe, attributes with DSM micronutrients 2024

Cu, B, S) delineated,

capturing co-

variation among

nutrients

Northeastern Soil organic DEM derivatives Random R² = 0.68 High-resolution Reza

Himalayas carbon (SOC) (slope, curvature, Forest, SOC management et al.,

TWI), NDVI, LST Regression- zones; identified 2024a

Kriging SOC-rich forest

vs. SOC-depleted

jhum fields


