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ABSTRACT

Importance of rice is well-known and well-accepted in every strata of society.
Nearly half of the world’s population depends on rice for their dietary intake.
But when this important crop faces the abiotic stress like flooding (or
complete submergence) in short-term and prolonged time, its performance
cannot reach up to its potential. With this backdrop rice needs to cope up
the stress following some alteration in agronomic management, so that
the non-tolerant varieties can perform with its best potential. Despite the
tolerant varieties (varieties with Sub1 QTL) can re-emerge after stress with
good recovery potential, that does not always solve the problem especially
where these varieties remain unavailable. For this, agronomic management
worked well and showed a good promise after the years of experimentation
in the rice-dominated areas. This article highlights some technological
interventions which has been recommended specially under flood affected
rice-growing Eastern Indian condition.
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Introduction

India is often reported to be highly
vulnerable to floods, where more than 40
mha area is flood prone, out of the total
geographical area of 329 mha. Floods are
recurrent natural calamity, causing a huge
loss to life and livelihood systems of that
particular area as well as spreading in the
surrounding areas. This can be attributed
to many factors like rising population,
rapid urbanization, growing developmental
and economic activities in flood plains
coupled with global warming. As per the

estimate, every year 75 lakh hectares of
land is affected, 1600 lives are lost and a
huge damage caused to crops, houses and
public utilities is estimated around
Rs.1805 crores due to floods (NDMA, Govt.
of India).

In India, submergence is a major
constraint for agriculture, and significantly
hampers rice production in lowland areas.
In West Bengal, nearly 30% rice growing
areas are vulnerable for flash flooding
(Bhowmick et al., 2014). In Assam state,
rice is cultivated in 2.6 million ha lands,
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of which nearly 1 million ha land is affected
by flash-flooding (Chetia et al., 2018). In
general, flooding severely hampers the O,
and CO, exchange processes between plant
and environment. This condition appears
by a slower diffusion of gases in water
compared to air (Armstrong, 1980;
Mommer and Visser, 2005), and further
intensified by turbid water. Thus, flash
flooding in rice fields was associated with
substantial yield losses, aggravating
poverty and food insecurity, worldwide
(Ismail, 2018).

Rice (Oryza sativa L.) is a water-loving
crop, comfortably grows in the lowland
semi-aquatic and flood-prone ecosystems
(Kuroha and Ashikari, 2020). But, excess
water can be harmful for normal rice plant
germination, growth and development
process (Nishiuchi etal., 2012; Kuroha and
Ashikari, 2020). In general, cultivated mega
rice varieties have low germination under
anaerobic condition, but, few rice
landraces (e.g. AC41620, Kalarata) has the
ability to germinate even in anaerobic
condition (Vijayan et al., 2018; Ghosal et
al., 2019). Molecular study associated with
anaerobic germination identifies gAG-9-2
is a major QTL for tolerance to germination
stage oxygen deficiency, abbreviated as
GSOD (Kretzschmar etal., 2015). Similarly,
cultivated mega rice cultivars cannot
tolerate consequences of excess water
stress during early vegetative stages and
die within one week of complete
submergence (Xu et al.,, 2006; Ghosal et
al., 2019). The most common response of
complete submergence at an early
vegetative stage was associated with
internodal elongation, and leaf senescence
(vellowing of leaves) in submerged parts
(Sarkar and Bhattacharjee, 2011, Singh et

al., 2014; Chakraborty et al., 2021). This
process of elongation initiates in plant to
get plant parts out from water surface. But,
this elongation process has a major caveat,
and aggravates breakdown of stored starch
compounds of plants and in a condition
when photosynthesis is reduced due to
lower availability of CO, and O,.
Fortunately, not all rice genotypes showed
a high rate of elongation under
submergence, and maintain low to
moderate growth under excess water stress
(Xu and Mackill, 1996). Reports suggests,
Flood resistant 13A (FR13A) rice genotypes
showed a lower growth up to two weeks of
complete submergence (Xu et al.,
2006).This mechanism of underwater
survival is known as ‘low oxygen
quiescence strategy’.

Underwater quiescence strategy
assures low degradation of reserved food
compounds (starch) in plants, and secure
rejuvenation of growth and quick recovery
after de-submergence. Molecular study
associated to complete submergence stress
tolerance identifies quiescence was
maintained in FR13A rice genotypes
through the function of Submergence-1
(SUB1) QTL gene, which is located on
chromosome 9 (Xu etal., 2006). SUB1 QTL
mainly contains three ethylene responsive
genes- SUB1A, SUB1B and SUB1C (Xu et
al., 2006). Among, SUB1A is anApetala2/
Ethylene response factor (AP2/ERF)
transcription factor, and responsible for
flash flood tolerance. Activity of SublA
gene restricts the gene activities associated
with starch breakdown process (4 amylase
and sucrose synthase), ethylene and
gibberellin biosynthesis pathways. Fukao
and Bailey-Serres (2008) showed, SUB1A
function can facilitate the expression of two
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repressors SLR1 and SLRL1 of gibberellin
synthesis. Thus, SUB1A action can
associate with underwater tissue portions
growth and elongation (Perata and
Voesenek, 2007). Furthermore, studies
with flooding tolerance identify expression
of a wax biosynthesis gene leaf gas film 1
(LGF1) might be crucial for maintaining
rice hydrophobicity and gas films (Zhang
etal, 2016; Kurokawa et al., 2018). Thus,
allows more gaseous exchange with the
environment.

To improve the complete submergence
tolerance of cultivated mega rice varieties,
SUB1 QTL is now incorporated into the
cultivated varieties to attain improved
submergence tolerance in cultivated rice.
Till now, this program generates different
rice varieties having SUB1 QTL such as
Swarna Subl, IR64 Subl, Samba Masuri
Subl, Savitri Subl, Ranjit Subl (Bailey-
Serres et al., 2010; Sarkar and
Bhattacharjee, 2011; Chetia et al., 2018).
Competent functioning of this Subl QTL
into cultivated plant significantly secures
underwater quiescence and thereby,
improved complete submergence tolerance.
Alternatively, different agronomic practices
(high seed rate for sowing, aged seedling,
spacing alteration, seed priming and
nutrient management) help to minimize
complete submergence associated damage
in both intolerant and tolerant plant, and
help in optimization of crop-stress
performance under stress (Bhowmik et al.,
2014; Ella etal., 2010; Bhaduri et al., 2020;
Hussain et al., 2016; Gautam et al., 2014;
Gautam et al., 2015). In this compilation,
we reviewed different crop management
practices associated with complete
submergence during germination and early
vegetative stage of rice plant, which

effectively improved plant survival in
excess water condition.

Complete submergence stress

According to Catling (1992), a
submerged plant is defined by “a plant
standing in water with at least part of
terminal above the water or completely
covered in water’. The major difference
between these two conditions of excess
water can be separated by keyword
‘complete’; which suggests the entire plant
remain in underwater (Jackson and Ram,
2003). Complete submergence stress can
come at germination and early
vegetativegrowth phases (Vijayan et al.,
2018; Oladosu et al., 2020) of rice.
Depending upon the depth and
stagnationperiod of water in the rice field,
submergence stress can be divided into two
different types known ‘lash flooding’ and
‘deep water flooding’. Flash flooding in
general lasts for few weeks, while, deep
water flooding lasts for several months in
rice field.

Germination stage complete submergence

In general, intolerant rice plants
showed a distinct difference in internodal
elongation under complete submergence
stress at germination stage.In rice field, if
water stagnation presents just after seed
sowing, due to a sudden heavy rainfall, can
lower germination and seedling emergence.
Elite rice cultivars are in general intolerant
to germination stage complete
submergence. These rice cultivars are
unable to secure germination in this
condition due to low availability of oxygen.
Fortunately, few rice plants, those are
tolerant to germination stage complete
submergence, have ability to germinate in
low oxygen environments and extend its
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coleoptile portions rapidly in under water
conditions by compromising growth of
coleorhizae (Chakraborty et al. 2022).
Kretzschmar et al. 2015 reported Khan
Hlan On rice genotype can germinate and
survived in low oxygen conditions. Vijayan
et al. (2018) reported a rice landrace
AC41620 also secured germination and
seedling emergence under excess water
conditions. Similarly, a rice landrace
Kalarata has high anaerobic germination
potential (Ghosh et al., 2019).

Early vegetative stage complete
submergence

In general, intolerant rice plants
showed three types of visible symptoms of
injury under complete submergence stress
(Jackson and Ram, 2003). These includes—
(i) a faster rate of elongation of internodal
or shoot tissue portion (Sarkar and
Bhattacharjee, 2011; Singh et al., 2014;
Chakraborty et al., 2021), (ii) Faster
degradation of chlorophyll or yellowing of
leaves and (iii) Faster degradation of plant
biomass. Literature report showed mega
rice varieties like IR42, Swarna, and IR64
are intolerant / susceptible for complete
submergence stress (Singh etal., 2014) and
showed faster elongation of shoot tissue
portion, which was 114.6% for IR42,
104.0% for Swarna, 75.3% for IR64 and
97.5% for Samba Masuri. Further studies
of Chakraborty et al., (2021) also showed
same for intolerant rice gentoypes
IC450292 and Swarna. Contrastingly, in
case of tolerant rice plants showed a low
to moderate elongation of shoot or
internodal tissue portions under
submergence. A study of Sarkar and
Bhattacharjee, 2011 reported that
complete submergence tolerant rice
landrace FR13A can restrict its underwater

shoot tissue growth. Similarly, Singh et al.
(2014) reported that tolerant rice
genotypes, FR13A, I1C49830-7, Swarna
Subl, IR64 Subl, Samba Masuri Subl
have abilities to restrict underwater
growth. Further studies of Chakraborty et
al. (2021) reported that FR13A and Swarna
Subl can restrict the underwater tissue
growth in complete submergence
stress.Along with variation of internodal
elongation, a distinct variation of
chlorophyll was observed in tolerant and
intolerant rice plants. Plants those are
tolerant against complete submergence
stress showed slower rateof chlorophyll
breakdown compared to intolerant rice
genotypes (Singh et al., 2014; Sarkar and
Bhattacharjee, 2011; Chakraborty et al.,
2021).

Physiological adaptions to flash flooding
at early vegetative stage

Plant may experience low light, low
carbon-di-oxide (CO,)and low oxygen (O,)
conditions, at complete submergence
stress (Vosenek and Sasidharan, 2013;
Vosenek and Bailey-Serres, 2014). This
was due to turbidity of stagnant water, and
slow diffusion rate of gases in water as
compared to air (Armstrong, 1980). To cope
with complete submergence, plants may
maintain a super-hydrophobic leaf
surfacethat retain gas film and showed
lysigeneous aerenchyma formation
(Voesenek et al., 2006; Pedersen et al.,
2009; Parlanti et al., 2011) in submerged
plant portion. Leaf gas film is a micro-layer
of air tapped portion present between
submerged leaves and surrounding water.
Along with, a thick layer of cuticle may
serve as a physical barrier between inner
tissue and outer environment. Presence of
leaf gas film and thick layer of cuticle on
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rice leaf surface may protect submerged
parts from direct contact of water.
Thus,allow a better flow of electrons from
PS-II, thereby, improved PS-II activity and
minimizes chlorophyll destruction process
(Ella et al., 2003; Panda et al., 2006, 2008;
Barik et al., 2019). Better chlorophyll
function and improved gaseous exchange
process CO, and O,mediated by LGF, may
improves underwater photosynthesis
(Winkel et al., 2014) in FR13A. Underwater
photosynthesis can also enhance the O,
concentrations of submerged plant
portions, which improved root aeration in
anoxic or hypoxic soil (Winkel et al., 2013)
In general, submergence stress may
facilitate the formation of
lysigeneousarenchymain leaf sheath
portions, thereby, improves the tissue
aeration in O, deprived condition. Parlanti
et al. (2011) showed submerged intolerant
(Arborio Precoce) and tolerant (FR13A) rice
plants increases the aerenchymatous
portions in submerged leaf sheath tissue.
Along with these, submergence stress can
effectively limit the gaseous exchange of
endogenously produced gas ethylene,
causing physical entrapment of ethylene.
Vreeburg et al. (2005) showed ethylene
concentration may increase in submerged
plants within minutes after submergence
and this process may aid in internodal
elongation. Reports suggestpresence of a
thick leaf gas film in FR13A may lower
tissue ethylene concentration by
facilitating gaseous exchange, thereby,
lowers internodal elongation of submerged
plant parts. Conversely, a thin layer of leaf
gas film and its early depletion may causes
entrapment of ethylene in intolerant rice
genotype IR42, thus, facilitates intermodal
elongation (Chakraborty et al., 2021).

Agronomic management practices for
submergence tolerance in rice

Different agronomic management
practices including using of healthy seeds
or seedling, seed rate, spacing, seed
priming, nutrient management etc. in
nursery beds as well in main fields for both
transplanting and direct sown are
indispensable to provide tolerance or uplift
the survivability of crop wunder
submergence whether using tolerant or
non-tolerant variety (Table 1). During
submergence for longer period or shorter
period, plants undergo drastic interchange
of environment, from aerobic to anaerobic
and vice-versa, which severely affects their
physiological and metabolic processes. In
this regard, better agronomic management
plays a crucial role in improving tolerance
capacity by activates or resuscitate the
physiological and metabolic processes to
cope up with this changing environment.
Several experiments have proven the
importance of improved management
practices regarding increasing the
survivability, tolerance capacity and
productivity of the rice under submergence.

Seed rate

Several findings reported that
alternation of seed rate could possibly be
a way to obtain greater survivability of rice
plant under submerged condition (Sharma
and Ghosh, 1998; Sharma and Ghosh,
1999; Bhawmick et al., 2014; Illangakoon
et al., 2018, Lal et al. 2018). According to
Sharma, 1995a directed seeded rice crop
prior to monsoon exhibit better
submergence tolerance than transplanted
seedling. Lal et al. (2018) illustrated that
increased seed rate (60 kg ha) in directed
seeded rice enhanced the growth
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attributes; yield attributes and yield than
seed rate of 40 kg ha'in both submergence
tolerant and intolerant varieties as higher
plant population at 60 kg ha' seed rate
compensated lower germination under
flooded condition. Same line of work by
other scientists (Sharma and Ghosh, 1998,
Abou Khalifa et al., 2014, Illangakoon et
al., 2018, Lal et al., 2018) reported similar
finding evincing higher seedling emergence
under submergence was attributed with
higher seed rate as a result higher of higher
tiller number, panicle number and grain
yield. According to Chae and Lee, 1996
high density of seeds exhibit greater
germination, seedling vigour and plant
population. Although, interplant
competition due to higher plant population
than optimum due higher seed rate affects
biomass production or yield of crops. But
with increased nitrogen fertilization this
loss can be compensated (Reddy et al.,
1986). However, growing of healthy
seedlings by maintaining optimum seed
rate can also be another submergence
tolerance option. Maintaining optimum
seed rate at nursery bed induce robust root
system and better nutrient storage in shoot
by reducing interplant competition
(Bhowmik etal., 2014, Banayo etal., 2018).

Seed or Seedling age

Age of seed or seedling to be
transplanted appear to be a critical factor
to survive against submergence condition.
As viability of stored food materials or
vigorous root and shoot system solely
depends on the age of the seeds or
seedlings age. Bhowmick et al. (2014)
depicted from the experiment that
performance of older seedlings (44 days)
under natural submergence was greater

than 30 days old seedlings in terms of
survivability, growth, yield attributes and
found 6% more yield than 30 days old
seedlings. Survivability of older seedlings
are better might be due to higher vigour,
mature tissue, carbohydrate content and
lower underwater shoot elongation (Singh
et al., 2005). Similar findings also were
reported by Chapagain and Yamaji (2010),
where 21 days old seedlings recorded
higher 3% higher yield than 14 days old
seedlings under 5-7 cm continuous
flooding. Bhaduri et al. (2021) tested the
survivability of seedling of three different
transplanting dates (21, 40 and 55 days)
in three different varieties (Sabita, Swarna
and IR64-Subl) under flash flood condition
and reported that late transplanting dates
(40 d, 55 d) exhibited better submergence
tolerance as compared to normal date of
transplanting (21 d) in terms of elongation
ability, leaf regeneration, tillering ability,
underwater radiation, chlorophyll
fluorescence, antioxidant enzymes
malondialdehyde and non-structural
carbohydrates (Figure 1).On other hand,
fresh and viable seeds performed better
than older seed as under submergence
situation oxidation degradation of lipid and
decline in antioxidant metabolites was
found in older seeds(Ella et al., 2010).

Crop Spacing and Geometry

Configuration of crops is one of the key
factor that determine the light penetration
and interception by the crop canopy, which
reflects on the production of
photosynthates and accumulation of dry
matter production. Under submerged
condition, wider spacing among the rice
plant (row-row: 20 cm and plant-plant: 15
cm and more) showed greater tolerance,
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1. Relative performance of varying age (21, 40, 55 DAT) seedlings to escape submergence
stress (Source: Authors’ own research photographs)

greater underwater radiation, less leaf
senescence, initial non-structural
carbohydrate, higher antioxidant activities
than closer spacing rice plants (Bhaduri
et al., 2020) (Figure 2). Alteration in row-
row and plant to plant spacing modify the
plant population per unit land area which
can affect seedling vigour and plant
biomass at the time crop establishment
(Chapagain and Yamaji, 2010). Thus, wide
spacing in rice field can be an effective
strategy for underwater plant survival.
Experiment of various crop geometry
i.e.circle, square and hexagon in rice under

submergence for 13 days at ICAR-NRRI,
Odisha, India showed that hexagonal
distribution of planting geometry had less
depletion rate of starch and chlorophyll,
delayed leaf senescence, and less oxidative
damage under submergence, followed by
better recovery leading to better stress
tolerance, as compared to circle and
square geometries.Also, the plants
situated in the periphery across the three
geometries showed better submergence
tolerance ability, over the plants situated
in the core (Annual report, 2021, ICAR-
NRRI) (Figure 3).
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Figure 2. Submergence experiment (1. before treatment and 2. post-submergence
recovery situation) (Source: Authors’ own research photographs)

Figure 3. Condition of treatment tank (submerged, in left) and control tank (in right)
after withdrawal of submergence treatment with layout of crop geometry (square, hexagon,
circle) replicated in the experiment (Source: Authors’ own research photographs)
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Seed Priming

The preliminary criteria to sustain
under submerged condition are higher
germination rate of seeds coupled with
healthy seedling growth (Miro and Ismail,
2013). Though rice crop well adapted to
germinate under anaerobic environment,
still vigour seedlings became a limiting
factor for better crop establishment under
submerged situation. Under this
circumstances, priming with water or
chemicals, found be one of good agronomic
practices to overcome the stress effect to
some extent. Treatment of seeds using
water or chemicals accelerates the
desirable metabolic processes and
activates the biomolecules (enzymes,
proteins etc.) regarding germination, which
helps the ‘upcoming’ seedlings to survive
under adverse situation (Ella et al., 2010;
Ismail et al., 2012; Javed et al., 2021; Mei
et al., 2017). About 40 % greater
survivability of seedling was observed in
hydro primed (H,O) seed than non-primed
seed as a result of increased activity of a-
amylase, synthesis of soluble sugars and
break down of starch under flooded
condition (llangakoon et al., 2016; Mulbah
and Adjetey, 2017).

Breakdown of starch in presence of a-
amylase into readily fermentable
carbohydrates supply the require energy
for the coleoptile growth and further stand
of the seedling (Magneschi and Perata,
2009; Park et al.,, 2010). Hussain et al
(2016) described through his experiment
under controlled system that seed priming
using selenium (60 uM selenium) and
salicylic acid (100mg L™ salicylic acid)
increased the germination by 44% and 46%
respectively, than without priming of seeds

in rice. Besides that, shoot and root length,
shoot and root fresh weight of the seedlings
were significantly improved in primed seed
and seedling vigour index was
approximately three times; and a-amylase
activity and total soluble sugar contents
in rice seedlings were approximately two
times higher than non-primed seed under
submergence condition.

Authors’ own group have also studied
some priming effect towards managing AG
(anaerobic germination) stress.
Submergence at germination stage
(standing water depth of 8 cm till 28 days)
was experimented with two contrasting
cultivars (IR 64 and IR 64-AG) in
combination of treatments for seed priming
(PrO: control, Prl1: 1% CaCl,, Pr2:1.5%
KH,PO,,) and nutrient management (NO:
RDF and N1: RDF+Ca). It was found that
priming with 1.5% KH, PO, and RDF+Ca
was the best combination that improved
AG potential under prolonged submergence
stress at germination stage, and it was
reflected in enhanced germination
percentage, germination rate and hypocotyl
elongation and reduced mean germination
time, particularly in non-AG genotype.
Priming improved periodic availability of
non-structural carbohydrates as a result
of increased a-amylase activity in both AG
and non-AG cultivars (Annual Report,
ICAR-NRRI, 2019).

Using of 2% of Jamun (Syzygium cumini)
leaf extract as a priming agent has improved
establishment of seedling as well as yield
attributes and yield of rice under flooded
condition (Sarkar, 2012). Under anaerobic
condition, primary way of producing energy
in plant is alcoholic fermentation and
increased activity of alcohol dehydrogenase

74




SATSA Mukhapatra - Annual Technical Issue 28 : 2024

in primed seed is one of reason for better
survivability than non-primed seed under
flooded condition (Sarkar, 2012).

Nutrient management

Inundation of water for a certain period
in both nursery bed or in main field causes
flashed out of nutrients from the upper
surface of the soil through runoff and
percolation, causing severe nutrient
deficiency in plant. As a result, rice plant
under submerged cause poor seedlings or
poor crop stands in main field after
transplanting. Farmers faced heavy
economic losses due to not adopting
appropriate pre and post flood nutrient
management. Several experiments over the
years have demonstrated proper nutrient
management practices during pre- and post-
flood situation to activate the important
physiological and biochemical processes to
recover from stress and enhances the growth
and productivity of the crop.

Optimum nutrient application through
fertilizers in nursery bed produced healthy
seedlings, which became well equip to
survive against submergence (Sarangi et
al., 2015, Singh et al., 2018). Singh et al.
(2018) reported that application nitrogen,
phosphorus and potassium at 20:40:60 kg
ha' at nursery bed recorded significantly
higher yield attributes and yield than other
lower doses of fertilization. Integrated
application of organic manure and
fertilizers found to be increased the vigour
of seedlings and subsequently recorded
higher grain yield (Sarangi et al, 2015,
Banayo et al., 2018).

Nitrogen and Phosphorus

Several experiments (Ella and Ismail,
2006, Gautam etal., 2014a and b, Gautam

et al., 2015) have reported that post flood
nitrogen along with basal phosphorus
application helps to faster recovery,
maintaining important metabolic
processes, regeneration of chlorophyll and
production of non-structural carbohydrates
also enhanced growth and productivity of
the crop. It was also reported that foliar
application of urea instead of broadcasting
much more beneficial (Gautam et al.,
2014b). On the other hand, pre
submergence nitrogen application with no
basal phosphorus enhances the shoot
elongation (Gautam et al, 2014a). It was
found that ethylene production in shoots
was significantly reduced due to basal
phosphorus application and hence
increased the survival and photosynthesis
after receding of water (Gautam etal., 2015;
Ramakrishnayya et al.,, 1999). Gautam et
al., 2015 reported that ethylene production
in plants with basal application of
phosphorus was 22.1 % lowered than the
plants with no phosphorus application.
Before submergence application of nitrogen
accelerates the succulency in the shoot
and elongation, which causes more plant
mortality (Gautam et al.,, 2014a) and poor
root growth due to greater accumulation
of soluble carbohydrates in shoot part (Ella
and Ismail, 2006). However, integrated
application of organic manures including
FYM and Sesbania and nitrogen and
phosphorus fertilizers also reported better
survivability, biomass production and yield
in direct sown rice under submergence
(Ghosh, 2007).

Potassium

Under flooded condition loss of
potassium from roots creates deficiency in
plant body (Marschner 1995). Therefore,
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an additional application of potassium after
receding the water can help to improve the
tolerance capacity during submergence and
recovery period after submergence. Dwivedi
et al. (2018) revealed through their
experiment that additional application of 10
kg nitrogen and potassium each in rice
improved 1000 grain weight, grain yield and
harvest index in Swarna-Subl in Indo-
Gangetic plain of Bihar, where plants were
completely submerged for 16 days. They also
reported 1.5-10-fold higher antioxidant
activities after submergence than before as
potassium played a significant role in to
overcome the submergence stress through
involvement in several physiological and
biochemical processes, activation of enzymes
and enhancing antioxidants activities
(Gautam et al., 2016; Cakmak, 2005).

Silicon

Besides combination application of
major nutrients, silicon (Si) application as
basal found to be beneficial for in
submergence tolerance (Chu et al., 2018;
Ella et al. 2011; Gautam et al., 2016).
Silicon helps to maintain the erectness of
the leaf which facilitates higher light
transmission and photosynthesis (Tamai
and Ma, 2008). Under lowland rice
cultivation, basal application of silicon with
post flood nitrogen application showed a
synergist effect and improves production
of the crop (Lal etal., 2015; Chu etal., 2018;
Mohanty et al., 2020).

Conclusion

Rice being a semi-aquatic plant, it can
tolerate this excess water stresses better
than other cereals. Most rice genotypes can
tolerate 2-3 days of complete submergence
without any physiological or metabolic

damage, but more often the period of stress
exceeds a longer time in the field condition.
In this article, the physiological
adaptations under both germination stage
and early vegetative submergence stress
were discussed followed by the effective
interventions of crop management
practices which have important to impart
tolerance to a significant extent. Agronomic
management practices like higher seed
rates, changing date of transplanting,
alteration in crop geometry, seed priming,
along with nutrient management at pre-
and post-submergence stages may
enhance both survival and yield by
improving crop germination, elongation,
biomass, photosynthetic efficiency at an
early crop growth stage and optimum
partitioning of carbohydrates to vegetative
and reproductive parts at later crop growth
stage. Realizing the importance, this
compilation was attempted to project the
research findings from authors and other
groups and paved the future research
avenues in the similar or related aspects.
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